Davi Scherer

Graduando em Economia. Membro do núcleo de Riscos e Derivativos no Clube de Finanças.
Graduando em Economia. Membro do núcleo de Riscos e Derivativos no Clube de Finanças.
Análise de Risco de um Portfólio

Análise de Risco de um Portfólio

Introdução

Neste artigo será aplicado algumas técnicas de análise de risco em um portfólio de ações, com o intuito de obter uma análise mais práticas de tópicos estudados dentro do núcleo de Riscos & Derivativos do Clube de Finanças. O objetivo é aplicar diferentes técnicas de análise de risco e demonstrar como que os resultados obtidos podemos ser utilizados para o estudo do risco do portfólio.

As técnicas aplicadas serão: Value at Risk (VaR); Expected Shortfall; Stress Test; Matriz de correlação; Máximos Drawdowns, e o cálculo de alguns RAPMs.

O portfólio montado

O portfólio no qual iremos realizar as nossas aplicações, será uma carteira composto 100% por ações listadas na B3. Foram selecionadas as ações de algumas das maiores empresas da bolsa brasileira, visando englobar empresas sólidas e de diferentes setores de atuação, para evitar que riscos específicos de setores ou de empresas Small Caps distorçam os nossos cálculos.

Assim, o portfólio foi montado contendo 10 ações, todas com pesos igualmente distribuídos. São elas: ABEV3, B3SA3, BBDC3, BPAC3, ITUB3, MGLU3, PETR3, SANDB3, VALE3, WEGE3.

Value at Risk

O conceito de Value at Risk (VaR), foi introduzido pelo banco americano JPmorgan nos anos 90. Ele pode ser definido como a perda máxima que pode ocorrer com X% de confiança em um período de t dias.

Existem diferentes métodos possíveis para calcular VaR, diferentes métodos resultam em diferentes resultados. As duas formas mais comuns de se calcular, são através do método paramétrico e do método histórico, também conhecido como método não-paramétrico.

No método paramétrico, assumimos que os retornos seguem uma distribuição conhecida (normalmente a Gaussiana) e calculando o retorno esperado e o desvio padrão, podemos chegar no valor do VaR, para um dado nível de confiança.

Já o método histórico, como o próprio nome mostra, vai utilizar os retornos passados do portfólio para estimar a possível perda futura do mesmo.

De maneira geral, o cálculo da VaR envolve 4 etapas:

1. Determinar o horizonte de tempo em que é desejado estimar a perda potencial.

2. Selecionar o grau de confiança para o VaR que será estimado.

3. Criar uma distribuição probabilística dos possíveis retornos para o portfólio.

4. Calcular o VaR estimado.

Neste artigo serão aplicados o método paramétrico e o método não paramétrico no portfólio previamente montado. Ambos os métodos foram aplicados utilizando os níveis de confiança de 99%, 97,5%, 95%, que são tradicionalmente os níveis de confiança mais utilizados, e foi calculado o VaR do portfólio para 1 dia.

Tabela Descrição gerada automaticamente

O que os resultados nos mostram é que por exemplo, a um nível de confiança de 95%, a perda máxima esperada do nosso portfólio para daqui 1 dia é de 2,96%.

Ressalte-se, porém, que se a perda registrada no período for superior ao VaR calculado, não significa que o cálculo do VaR está incorreto, apenas que o valor da queda está nos valores que excedem o nível de confiança utilizado. Quando se utiliza 95% de nível de confiança, isso significa que existe uma chance de 5% de o valor registrado superar o VaR calculado. Tal fato pode ser visualizado no gráfico abaixo:

Diagrama Descrição gerada automaticamente

Como sendo uma estatística quantitativa, o VaR captura somente riscos que podem ser quantificados, ou seja, ele não captura por exemplo, riscos de liquidez ou riscos operacionais.

Expected Shortfall

A Expected Shortfall, ou também conhecida como Conditional Value at Risk (CVaR), entra como uma espécie de complemento do VaR. Ela responde à pergunta de o que aconteceria se fosse registrado uma perda maior do que a perda máxima calculada pelo VaR. É visando esses casos que se calcula a Expected Shortfall.

A ideia do seu cálculo é selecionar todos os valores que estão fora do nível de confiança, e calcular uma média desses valores. De uma forma análoga, também pode-se definir o cálculo como sendo a área da distribuição que abrange os valores não contemplados pelo VaR

Tabela Descrição gerada automaticamente

Vale destacar que o Extected Shortfall sempre dará um valor superior ao VaR, pois como foi visto pela sua definição, ele trata dos valores superiores ao Value at Risk.

A interpretação dos resultados funciona da mesma maneira que para o VaR. A perda média esperada para o período de 1 dia, caso ela ultrapasse o VaR, a um nível de confiança de 95%, é de 6,04% do valor inicial do portfólio.

Matriz de Correlação

Quando montamos o portfólio, foi destacado a importância de não selecionar muitas ações de empresas de um mesmo setor para evitar que eventos específicos de tais setores tenham uma influência muito grande sobre os cálculos. Em outras palavras, foram evitadas ações de empresas altamente correlacionadas, pois ações de um mesmo setor tendem a ter uma alta correlação.

A forma mais formal de analisar a correlação das ações de um portfolio de ações é através de uma Matriz de Correlação. Com ela podemos analisar como as diferentes ações do portfólio se correlacionam e avaliar de uma forma geral se a carteira está muito concentrada.

Tabela Descrição gerada automaticamente

Analisando a Matriz de Correlação do portfólio, podemos ver que ele aparenta ser composto por ações não muito correlacionadas entre si. Como dito, ações de um mesmo setor tendem a ter uma correlação mais alta, podemos ver que as ações do Banco Bradesco (BBDC3) e do Itaú (ITUB3) possuem a maior correlação do portfólio. Por outro lado, a Suzano (SUZB3) e o Banco do Brasil (BBDC3) possuem a correlação mais baixa.

RAPM – Sharpe Ratio

Risk Adjustment Perfomance Measures (RAPM), são métricas de riscos utilizadas para compreender melhor a relação risco e retorno de investimentos. Eles foram criados nos anos 60, pelo William Sharpe, criador do Capital Asset Pricing Model (CAPM), e as duas ferramentas são muito interligadas.

O RAPM mais conhecido é o Sharpe Ratio, ele basicamente nos diz quanto que um investimento está retornando, comparado a uma taxa livre de risco. Ele pode ser calculado pela fórmula abaixo, onde Rp é o retorno do portfólio, Rf a taxa livre de risco e σp o desvio padrão do retorno do portfolio.

No gráfico abaixo, podemos ver o comportamento do índice de Sharpe do portfólio ao longo do tempo, onde a média foi de um pouco inferior a 2.

Gráfico, Linha do tempo Descrição gerada automaticamente com confiança média

Máximo Drawdown

A principal utilidade do Máximo Drawdown é como uma métrica de risco, avaliando o desempenho passado do portfólio. Ele é usado pra nos mostrar as principais quedas passadas que o portfólio teve, em determinado período. No gráfico temos destacado os 5 maiores Drawdowns do portfólio nos últimos 3 anos.

Analisando o gráfico Underwater, podemos ter uma noção de como foram as principais quedas do portfólio nos últimos 3 anos.

Com essa ferramenta podemos observar como foram as quedas passadas do portfólio e, assim, ponderar se é um histórico de quedas que nos faria sentir seguros.

Gráfico, Gráfico de linhas, Gráfico de dispersão Descrição gerada automaticamente

Uma imagem contendo Gráfico Descrição gerada automaticamente

Analisando o gráfico Underwater, podemos ver que não foi um evento raro o portfólio registrar uma queda de aproximadamente 5%. Assim se um investidor não estiver disposto a se expor a uma volatilidade desse nível, o nosso portfólio não seria uma boa escolha de investimento.

Para exemplificar melhor a utilidade deste gráfico, vamos analisar o Underwater plot do Bitcoin.

Gráfico, Histograma Descrição gerada automaticamente

Com ele podemos ver melhor a utilidade desta análise, para visualizar as piores perdas passadas de um ativo ou portfólio. No caso do Bitcoin fica claro que um investidor que deseja investir neste ativo deve estar disposto a passar por períodos de muita volatilidade, enfrentando forte quedas constantemente.

Stress Test

O Stress Test é um processo amplo que pode ser aplicado a um portfólio de investimentos, com o objetivo de verificar como que os ativos seriam afetados de acordo com cenários adversos.

O Stress Test pode ser usado com o intuito de avaliar o desempenho do portfólio como um todo em cenário de instabilidade, e para avaliar o desempenho dos ativos individualmente, e assim permitir analisar quais ativos dentro do portfólio seriam os mais sensíveis a instabilidades no mercado.

Para o portfólio em questão foi aplicado um Stress Test histórico, onde aplicamos o portfólio atual em crises passadas. Os cenários passados utilizados podem ser crises econômicas, políticas, momentos de incerteza sobre o mercado, basicamente qualquer cenário que possa impactar os ativos dentro do portfólio.

Foram selecionados 3 períodos de fortes quedas do mercado e comparado os desempenhos hipotéticos do portfólio nessas quedas, frente ao desempenho que o Ibovespa teve nesses períodos.

Os períodos selecionados foram: o impacto da crise de 2008 na bolsa brasileira, o Joesley Day que ocorreu em 2017 e mais recente, a chegada da pandemia do corona vírus no Brasil em março de 2020.

No gráfico e tabela abaixo temos os resultados da aplicação, e podemos ver que o portfólio não se distanciou muito do desempenho do Ibovespa em nenhuma das situações. O que já era de se esperar, pois o portfólio é composto por algumas das maiores ações do índice.

Gráfico, Gráfico de cascata Descrição gerada automaticamente

Com os resultados do Stress Test obtidos, é possível estabelecer as chamadas Políticas de Resposta. É através delas que, a partir da identificação dos principais pontos fracos do portfólio, buscamos aplicar medidas a fim de fortalecer a carteira, seja com um rebalanceamento do portfolio ou um Hedge com derivativos no mesmo.

Referências

Alexander, Carol. And Sheedy, Elizabeth. The Professional Risk Manager’s Handbook: A Comprehensive Guide to Current Theory and Best Practices. 1 ed. PRMIA Publications, 2005.

JORION, Philippe. Financial Risk Manager Handbook. 3. ed. New Jersey: John Wiley & Sons Inc, 2007

JORION, Philippe. Portfolio Risk: Analytical Methods. Value At Risk: The New Benchmark for Managing Financial Risk. 3. ed.

Posted by Davi Scherer in Derivativos & Riscos, 1 comment
Índice Beta

Índice Beta

O que é o Índice Beta?

Um dos indicadores mais utilizados e mais famosos para análise do risco de um portfólio ou de um ativo específico é o Índice Beta. Muito difundido entre os investidores, principalmente os que fazem uma análise fundamentalista, o Beta é utilizado como uma proxy de risco, ele é uma medida de sensibilidade entre por exemplo, uma ação e um Índice como o Ibovespa. Assim, uma vez que sabemos o Beta de diversos ativos, é possível compará-los e descobrir quais ativos são mais agressivos e quais são mais defensivos.

O Beta de uma ação, por exemplo, pode ser definido como o coeficiente angular de uma regressão linear entre os retornos de um índice como o Ibovespa e os retornos de uma ação, permitindo quantificar o grau de variação de uma ação em função da variação do índice Ibovespa. Assim, podemos dizer que o Beta é uma tentativa matemática de replicar o risco não diversificável de uma economia. 

Aplicabilidades do Beta 

Como comentando, o Beta é utilizado como um indicador para medir a sensibilidade de um ativo em relação a um benchmark do mercado. Por exemplo, se uma ação tem um Beta de 1,4, isso significa que se o Índice Ibovespa subir 10%, a ação subirá 14%. Dessa mesma forma, se o Índice Ibovespa cair 10%, espera-se que a ação caia 14%.

Com isso, podemos usar o Beta para analisar a volatilidade e selecionar os ativos que se encaixam no nosso perfil de investidor, em relação à exposição ao risco. Ações com um Beta maior do que 1 são consideradas ativos com mais riscos, pois são mais voláteis do que o mercado como um todo, e ações com um beta menor do que 1 são consideradas ações mais conservadoras, pois elas são menos voláteis do que o mercado como um todo.

Outra aplicabilidade muito importante do Beta é a sua utilização no Capital Asset Pricing Model (CAPM), principal modelo utilizado para calcular o Custo de Equity, muito importante para a elaboração de modelos de Valuation. Basicamente, o modelo CAPM busca encontrar o retorno esperado de um investimento em um ativo que contém risco.

                                                𝐸(𝑅𝑖= 𝑅𝑓 + 𝜷𝒊[𝐸(𝑅𝑚− 𝑅𝑓

Onde na equação, E(ri) representa o retorno esperado, Rf a taxa livre de risco, βi o Beta do ativo, [E(Rm) – Rf] representa o prêmio de risco. A lógica deste modelo consiste na ideia de que ao se investir em um ativo que contém risco o investidor deverá receber uma taxa de juros livre de risco, que seria o retorno obtido ao se investir em um ativo que não contém risco, mais um prêmio pelo o fato de estar se expondo a um risco, e esse prêmio é ponderado por um grau de específico de cada ativo, que neste caso é o Beta do ativo. Assim, segundo o modelo CAPM, ao investir um ativo com um Beta mais elevado, o investidor pode esperar um retorno maior do que uma aplicação com um Beta mais conservador. 

Como se calcula o Beta? 

Uma das formas de se calcular o Beta de uma ação é dividindo a covariância do retorno da ação com o retorno do índice de mercado pela variância do retorno do mercado.

Uma outra forma, mais prática, de se calcular o Beta é através da estimação de uma regressão linear, na qual o Beta seria o coeficiente angular desta regressão. Para o caso do Beta de uma ação, deve ser feito uma regressão linear entre os retornos de um índice e o da ação que está sendo analisada. Assim, será preciso baixar os dados das cotações passadas da ação e do índice Ibovespa. Recomenda-se pegar entre 3 e 5 anos de cotações passadas, e calcular o retorno percentual mensal deste período analisado. O motivo de se utilizar o retorno mensal é que, se a ação analisada for uma Small Cap, ela provavelmente terá uma liquidez muito baixa, podendo ficar vários dias sem ser negociada, o que afetaria o valor do Beta. Para evitar isso, calcula-se o retorno mensal.

Uma vez calculados os retornos do período, basta realizar a regressão: 

No gráfico acima, temos plotados os retornos do Ibovespa e os retornos da ação da Via Varejo (VVAR3), entre outubro de 2015 e setembro de 2020, e temos traçada a reta de regressão, que nos permite chegar na sua equação e consequentemente no Beta.

Observa-se que encontramos um beta de 2,3 para a VVAR3, o que a classifica como uma ação com um Beta alto e, também, como uma ação com alta volatilidade. Este Beta que calculamos agora, através da regressão, é chamado de Beta estatístico. É este Beta que sites como yahoo finance e Investing.com nos fornecem em suas plataformas. Mas o valor deste Beta estatístico sofre com alguns problemas que tornam o seu resultado não tão preciso, que para serem corrigidos é necessário o cálculo de um outro Beta, que faremos mais a frente.

Problemas do Beta estatístico

Como comentado, o Beta estatístico, calculado através de uma regressão, possui alguns problemas. O primeiro destes problemas, que já foi mencionado, é o de uma possível falta de liquidez na ação, que influenciaria nos resultados do Beta. Foi comentado que esse era o motivo de se utilizar variações mensais nos preços para os cálculos, mas esta solução apenas minimiza o problema, não eliminando-o completamente.

Outro problema do Beta estatístico é que o cálculo dele é feito inteiramente utilizando variáveis passadas, e retornos passados não são garantias de retornos futuros.

 Um dos principais problemas do Beta estatístico é decorrente do seu desvio padrão. No nosso caso da VVAR3, o Beta estatístico que calculamos foi de 2,3 e seu desvio padrão é de 0,3, isso significa que o valor do Beta pode ser qualquer número entre 2 e 2,6 o que pode tirar muita confiança do Beta estatístico. Com o objetivo de corrigir ou minimizar estes problemas, foi criado o Bottom-up Beta. 

Bottom-up Beta

Bottom-up Beta consiste na ideia de que o desvio padrão de uma média de Betas será menor do que a média dos desvios padrões de Betas individuais. Assim, deve-se utilizar um Beta setorial para calcular os Betas individuais de cada empresa, pois desse modo os problemas mencionados anteriormente serão minimizados.

Podemos dividir o cálculo do Bottom-up Beta em 3 etapas:

  1. Calcular o Beta estatístico de todas as empresas do mesmo segmento da
    empresa que está sendo analisada e fazer uma média desse Betas,
    ponderados ao valor de mercado de suas respectivas empresas.
  2. Descobrir qual seria o valor desse Beta se não fosse levado em conta
    grau de alavancagem das empresas 
  3. Colocar apenas a alavancagem da empresa que está sendo analisada de
    volta no Beta. 
Para ficar mais claro, vamos aplicar estas 3 etapas para o caso da Via Varejo (VVAR3)

Na tabela acima, temos empresas que atuam no mesmo segmento que a Via Varejo, são elas; Magazine Luiza (MGLU3), B2W (BTOW3), Lojas Americanas (LAME3) e a própria Via Varejo (VVAR3). Também temos os Betas estatísticos, valor de mercado e a relação dívida/equity de cada empresa.

Realizando a primeira etapa do processo, utilizando os valores da tabela, iremos chegar em um Beta do setor da Via Varejo. Porém, este valor ainda precisa ser trabalhado:

𝛽𝑠𝑒𝑡𝑜𝑟 = 1,20

Faz sentindo pensar que, em momentos de instabilidade no mercado, as empresas que estiverem com um grau de alavancagem mais elevado, tendem a ter ações mais voláteis, e essas empresas pode acabar influenciando no cálculo do Bottom-up Beta. Por isso, é preciso tirar o grau de alavancagem das empresas do cálculo. Para fazer isso, deve-se calcular a relação D/E média do segmento e aplicar na fórmula abaixo, onde t é a alíquota de imposto de renda. Para calcular a relação D/E média do segmento, deve ser respeitada a ponderação pelo valor de mercado de cada empresa, da mesma forma que foi feita para o cálculo do 𝛽𝑠𝑒𝑡𝑜𝑟. Assim,
encontramos uma relação D/E médio do segmento de 0,23.

𝛽𝑑 𝑠𝑒𝑡𝑜𝑟 = 1,04

Agora que temos o Beta desalavancado do setor, falta apenas um passo para encontrarmos o Bottom-up Beta. Como comentado, no passo anterior foi removido o grau da alavancagem das empresas do cálculo do nosso Beta, pois não queremos que ele seja influenciado por empresas muito alavancadas, mas o grau da alavancagem da empresa que nós estamos analisado deve ser sim considerado, ele é o único grau de alavancagem que deve influenciar no nosso cálculo, e por isso colocamos ele de volta no cálculo. Para fazer isso, basta utilizar a mesma fórmula que usamos para encontrar o Beta desalavancado do setor, apenas agora iremos utilizar a relação D/E da empresa que estamos analisando.

𝐵𝑜𝑡𝑡𝑜𝑚 − 𝑢𝑝 𝐵𝑒𝑡𝑎𝑣𝑣𝑎𝑟3 = 1,53

Assim, realizando todas as etapas, foi encontrado um Bottom-up Beta para a VVAR3 de 1,53, uma diferença significativa se comparado ao Beta estatístico encontrado através da regressão linear.

Conclusão 

Sendo assim, foi discutido neste artigo os princípios básicos do índice Beta, algumas das possíveis aplicabilidades dele, como calcular ele através de uma regressão linear, os problemas do Beta estatístico e formas de melhorá-lo utilizando o Bottom-up Beta. 

Como discutido, o índice Beta é um indicador extremamente utilizado por sua fácil interpretação e por poder ser aplicado a um portfólio de investimentos, ou para uma ação específica, e, mesmo tendo os seus problemas, ele se mostra uma ferramenta muito útil para investidores.

Referências

Póvoa, Alexandre. Valuation: Como Precificar Ações. 2 ed. São Paulo: Atlas, 2020.

Alexander, Carol. And Sheedy, Elizabeth. The Professional Risk Manager’s Handbook: A Comprehensive Guide to Current Theory and Best Practices. 1 ed. PRMIA Publications, 2005.

Posted by Davi Scherer in Derivativos & Riscos, 4 comments