volatilidade

Índice Beta

Índice Beta

O que é o Índice Beta?

Um dos indicadores mais utilizados e mais famosos para análise do risco de um portfólio ou de um ativo específico é o Índice Beta. Muito difundido entre os investidores, principalmente os que fazem uma análise fundamentalista, o Beta é utilizado como uma proxy de risco, ele é uma medida de sensibilidade entre por exemplo, uma ação e um Índice como o Ibovespa. Assim, uma vez que sabemos o Beta de diversos ativos, é possível compará-los e descobrir quais ativos são mais agressivos e quais são mais defensivos.

O Beta de uma ação, por exemplo, pode ser definido como o coeficiente angular de uma regressão linear entre os retornos de um índice como o Ibovespa e os retornos de uma ação, permitindo quantificar o grau de variação de uma ação em função da variação do índice Ibovespa. Assim, podemos dizer que o Beta é uma tentativa matemática de replicar o risco não diversificável de uma economia. 

Aplicabilidades do Beta 

Como comentando, o Beta é utilizado como um indicador para medir a sensibilidade de um ativo em relação a um benchmark do mercado. Por exemplo, se uma ação tem um Beta de 1,4, isso significa que se o Índice Ibovespa subir 10%, a ação subirá 14%. Dessa mesma forma, se o Índice Ibovespa cair 10%, espera-se que a ação caia 14%.

Com isso, podemos usar o Beta para analisar a volatilidade e selecionar os ativos que se encaixam no nosso perfil de investidor, em relação à exposição ao risco. Ações com um Beta maior do que 1 são consideradas ativos com mais riscos, pois são mais voláteis do que o mercado como um todo, e ações com um beta menor do que 1 são consideradas ações mais conservadoras, pois elas são menos voláteis do que o mercado como um todo.

Outra aplicabilidade muito importante do Beta é a sua utilização no Capital Asset Pricing Model (CAPM), principal modelo utilizado para calcular o Custo de Equity, muito importante para a elaboração de modelos de Valuation. Basicamente, o modelo CAPM busca encontrar o retorno esperado de um investimento em um ativo que contém risco.

                                                𝐸(𝑅𝑖= 𝑅𝑓 + 𝜷𝒊[𝐸(𝑅𝑚− 𝑅𝑓

Onde na equação, E(ri) representa o retorno esperado, Rf a taxa livre de risco, βi o Beta do ativo, [E(Rm) – Rf] representa o prêmio de risco. A lógica deste modelo consiste na ideia de que ao se investir em um ativo que contém risco o investidor deverá receber uma taxa de juros livre de risco, que seria o retorno obtido ao se investir em um ativo que não contém risco, mais um prêmio pelo o fato de estar se expondo a um risco, e esse prêmio é ponderado por um grau de específico de cada ativo, que neste caso é o Beta do ativo. Assim, segundo o modelo CAPM, ao investir um ativo com um Beta mais elevado, o investidor pode esperar um retorno maior do que uma aplicação com um Beta mais conservador. 

Como se calcula o Beta? 

Uma das formas de se calcular o Beta de uma ação é dividindo a covariância do retorno da ação com o retorno do índice de mercado pela variância do retorno do mercado.

Uma outra forma, mais prática, de se calcular o Beta é através da estimação de uma regressão linear, na qual o Beta seria o coeficiente angular desta regressão. Para o caso do Beta de uma ação, deve ser feito uma regressão linear entre os retornos de um índice e o da ação que está sendo analisada. Assim, será preciso baixar os dados das cotações passadas da ação e do índice Ibovespa. Recomenda-se pegar entre 3 e 5 anos de cotações passadas, e calcular o retorno percentual mensal deste período analisado. O motivo de se utilizar o retorno mensal é que, se a ação analisada for uma Small Cap, ela provavelmente terá uma liquidez muito baixa, podendo ficar vários dias sem ser negociada, o que afetaria o valor do Beta. Para evitar isso, calcula-se o retorno mensal.

Uma vez calculados os retornos do período, basta realizar a regressão: 

No gráfico acima, temos plotados os retornos do Ibovespa e os retornos da ação da Via Varejo (VVAR3), entre outubro de 2015 e setembro de 2020, e temos traçada a reta de regressão, que nos permite chegar na sua equação e consequentemente no Beta.

Observa-se que encontramos um beta de 2,3 para a VVAR3, o que a classifica como uma ação com um Beta alto e, também, como uma ação com alta volatilidade. Este Beta que calculamos agora, através da regressão, é chamado de Beta estatístico. É este Beta que sites como yahoo finance e Investing.com nos fornecem em suas plataformas. Mas o valor deste Beta estatístico sofre com alguns problemas que tornam o seu resultado não tão preciso, que para serem corrigidos é necessário o cálculo de um outro Beta, que faremos mais a frente.

Problemas do Beta estatístico

Como comentado, o Beta estatístico, calculado através de uma regressão, possui alguns problemas. O primeiro destes problemas, que já foi mencionado, é o de uma possível falta de liquidez na ação, que influenciaria nos resultados do Beta. Foi comentado que esse era o motivo de se utilizar variações mensais nos preços para os cálculos, mas esta solução apenas minimiza o problema, não eliminando-o completamente.

Outro problema do Beta estatístico é que o cálculo dele é feito inteiramente utilizando variáveis passadas, e retornos passados não são garantias de retornos futuros.

 Um dos principais problemas do Beta estatístico é decorrente do seu desvio padrão. No nosso caso da VVAR3, o Beta estatístico que calculamos foi de 2,3 e seu desvio padrão é de 0,3, isso significa que o valor do Beta pode ser qualquer número entre 2 e 2,6 o que pode tirar muita confiança do Beta estatístico. Com o objetivo de corrigir ou minimizar estes problemas, foi criado o Bottom-up Beta. 

Bottom-up Beta

Bottom-up Beta consiste na ideia de que o desvio padrão de uma média de Betas será menor do que a média dos desvios padrões de Betas individuais. Assim, deve-se utilizar um Beta setorial para calcular os Betas individuais de cada empresa, pois desse modo os problemas mencionados anteriormente serão minimizados.

Podemos dividir o cálculo do Bottom-up Beta em 3 etapas:

  1. Calcular o Beta estatístico de todas as empresas do mesmo segmento da
    empresa que está sendo analisada e fazer uma média desse Betas,
    ponderados ao valor de mercado de suas respectivas empresas.
  2. Descobrir qual seria o valor desse Beta se não fosse levado em conta
    grau de alavancagem das empresas 
  3. Colocar apenas a alavancagem da empresa que está sendo analisada de
    volta no Beta. 
Para ficar mais claro, vamos aplicar estas 3 etapas para o caso da Via Varejo (VVAR3)

Na tabela acima, temos empresas que atuam no mesmo segmento que a Via Varejo, são elas; Magazine Luiza (MGLU3), B2W (BTOW3), Lojas Americanas (LAME3) e a própria Via Varejo (VVAR3). Também temos os Betas estatísticos, valor de mercado e a relação dívida/equity de cada empresa.

Realizando a primeira etapa do processo, utilizando os valores da tabela, iremos chegar em um Beta do setor da Via Varejo. Porém, este valor ainda precisa ser trabalhado:

𝛽𝑠𝑒𝑡𝑜𝑟 = 1,20

Faz sentindo pensar que, em momentos de instabilidade no mercado, as empresas que estiverem com um grau de alavancagem mais elevado, tendem a ter ações mais voláteis, e essas empresas pode acabar influenciando no cálculo do Bottom-up Beta. Por isso, é preciso tirar o grau de alavancagem das empresas do cálculo. Para fazer isso, deve-se calcular a relação D/E média do segmento e aplicar na fórmula abaixo, onde t é a alíquota de imposto de renda. Para calcular a relação D/E média do segmento, deve ser respeitada a ponderação pelo valor de mercado de cada empresa, da mesma forma que foi feita para o cálculo do 𝛽𝑠𝑒𝑡𝑜𝑟. Assim,
encontramos uma relação D/E médio do segmento de 0,23.

𝛽𝑑 𝑠𝑒𝑡𝑜𝑟 = 1,04

Agora que temos o Beta desalavancado do setor, falta apenas um passo para encontrarmos o Bottom-up Beta. Como comentado, no passo anterior foi removido o grau da alavancagem das empresas do cálculo do nosso Beta, pois não queremos que ele seja influenciado por empresas muito alavancadas, mas o grau da alavancagem da empresa que nós estamos analisado deve ser sim considerado, ele é o único grau de alavancagem que deve influenciar no nosso cálculo, e por isso colocamos ele de volta no cálculo. Para fazer isso, basta utilizar a mesma fórmula que usamos para encontrar o Beta desalavancado do setor, apenas agora iremos utilizar a relação D/E da empresa que estamos analisando.

𝐵𝑜𝑡𝑡𝑜𝑚 − 𝑢𝑝 𝐵𝑒𝑡𝑎𝑣𝑣𝑎𝑟3 = 1,53

Assim, realizando todas as etapas, foi encontrado um Bottom-up Beta para a VVAR3 de 1,53, uma diferença significativa se comparado ao Beta estatístico encontrado através da regressão linear.

Conclusão 

Sendo assim, foi discutido neste artigo os princípios básicos do índice Beta, algumas das possíveis aplicabilidades dele, como calcular ele através de uma regressão linear, os problemas do Beta estatístico e formas de melhorá-lo utilizando o Bottom-up Beta. 

Como discutido, o índice Beta é um indicador extremamente utilizado por sua fácil interpretação e por poder ser aplicado a um portfólio de investimentos, ou para uma ação específica, e, mesmo tendo os seus problemas, ele se mostra uma ferramenta muito útil para investidores.

Referências

Póvoa, Alexandre. Valuation: Como Precificar Ações. 2 ed. São Paulo: Atlas, 2020.

Alexander, Carol. And Sheedy, Elizabeth. The Professional Risk Manager’s Handbook: A Comprehensive Guide to Current Theory and Best Practices. 1 ed. PRMIA Publications, 2005.

Posted by Davi Scherer in Derivativos & Riscos, 2 comments
Utilização do Modelo GARCH(1,1) na Previsão de Volatilidade

Utilização do Modelo GARCH(1,1) na Previsão de Volatilidade

O objetivo deste artigo é trazer um entendimento sobre o que se trata o modelo GARCH e apresentar uma aplicação em python deste modelo para a previsão de volatilidade. Vamos começar compreendendo como o modelo surgiu e como se destaca em comparação às outras formas de estimar a volatilidade. Em seguida, vamos explicar as propriedades do modelo GARCH(1,1) que será utilizado em nossa aplicação. Por fim, iremos demonstrar como montar a aplicação do modelo em python.

 

A motivação para este artigo foi a relevância que a volatilidade possui atualmente para os estudos de previsão de riscos. Um dos momentos de reconhecimento da importância de se mensurar o efeito da volatilidade ao longo do tempo na análise de riscos, ocorreu quando Robert Engle recebeu o Prêmio Nobel de Economia em 2003, por desenvolver um método estatístico para lidar com esta propriedade das séries econômicas. A Academia Real Sueca de Ciências afirmou que:

 

“Os modelos ARCH de Engle se tornaram ferramentas indispensáveis não apenas para pesquisas, mas também para analistas do mercado financeiro, que os utilizam na formação de ativos e na avaliação de risco de portfólio”.

Por que utilizar o Modelo GARCH para modelagem da volatilidade?

Uma mudança na variância ou volatilidade ao longo do tempo pode causar problemas na modelagem de séries temporais com métodos clássicos. Pois, um aspecto de uma série temporal que esses modelos não captam é uma alteração na variância ao longo do tempo, devido ao fato de que nesses modelos as observações recentes receberiam o mesmo peso que observações mais antigas, que claramente podem não possuir o mesmo impacto ao longo do tempo que uma vez tiveram.

 

É por isso que métodos de estimativa de volatilidade evoluíram para modelos que dão mais peso às informações recentes. Desses primeiros modelos se destacam a família de modelos GARCH, inicialmente proposto por Engle (1982), como ARCH, e generalizado por Bollerslev (1986). Esses métodos fornecem uma maneira de modelar uma mudança na variância de uma série temporal dependente do tempo.


A principal diferença entre eles seria o fato de que enquanto o modelo ARCH(q) demonstra que a variância condicional, ou volatilidade, σt2, em um determinado período, depende da magnitude de uma série de retornos ao quadrado (ou erros quadráticos), rt2, em “q” períodos anteriores, o modelo GARCH(p,q) vai além com componente adicional, sendo este a variância condicional em “p” períodos anteriores. A seguir a equação da variância condicional definida pelo modelo ARCH(q):

1

O modelo GARCH (p,q) possui um termo autorregressivo, como em ARCH(q), com a adição de um termo de média móvel. O termo autorregressivo (p) modela a variância condicional dos erros quadráticos ou simplesmente modela a variância condicional da série temporal ao quadrado, já a parte de média móvel (q) modela a variação do processo. A seguir a equação da variância condicional definida pelo modelo GARCH(p,q):

2

Outro motivo relevante para se usar o modelo GARCH, é que ele pode capturar a aglomeração da volatilidade, ou clusters de volatilidade, sofrida por séries financeiras. Os preços dos ativos são caracterizados por esse fenômeno, que se trata de períodos nos quais os preços exibem grandes variações para um longo período seguido por um período de tranquilidade comparativa.

 

Existem hoje muitas variantes do modelo GARCH, a maioria das quais fornece apenas melhorias marginais no modelo original. Entre essas extensões do modelo GARCH, estão o Integrated GARCH, Exponential GARCH ou EGARCH, GJR-GARCH e outras. A família de modelos GARCH é amplamente utilizada na prática para prever a volatilidade e os retornos do mercado financeiro.



O modelo

Para a maioria das séries financeiras, a utilização do modelo GARCH(1,1) já é suficiente para explicar sua volatilidade, desta forma, para a aplicação que será demonstrada mais a frente, utilizaremos este modelo. Para explicar o modelo, inicialmente consideramos rt como uma série de retornos, partindo disso o modelo GARCH(1.1) é definido como:

3

A equação acima demonstra que o modelo contém um termo defasado de retorno ao quadrado, rt-12, como em ARCH(1), mas também um termo defasado da variação condicional, σt-12, para determinar a variação condicional no período t, σt2.


O termo alfa, α, indica quanto o último retorno observado tem de influência sobre a variância condicional hoje, já o termo beta, β, indica quanto a volatilidade do período anterior deve influenciar a volatilidade hoje. Quanto maior o alfa maior o impacto imediato de choques nos dados da série temporal e quanto maior o beta maior a duração do impacto. Para a estimação dos parâmetros, é utilizado o método de máxima verossimilhança.

 

Uma propriedade este modelo é que todos os parâmetros não são negativos, ω, α, β ≥ 0. Para que o modelo seja estacionário, a soma dos parâmetros alfa e beta deve ser menor que um,  α + β < 1.

Ômega, ω, pode ser a visto como seria a variação se as informações sobre variações passadas não estivessem sendo passadas para o modelo. Ômega também é definido como o produto de um termo gama, γ, e da variância incondicional ou variância de longo prazo, σLR. Enquanto ômega, alfa e beta são os parâmetros de volatilidade do modelo, gama pode ser chamado de parâmetro de assimetria do modelo.

4

A equação acima nos mostra que, para existir a variância incondicional de rt2é necessário que α + β < 1, justificando a restrição de estacionariedade do modelo. É utilizada a expressão a seguir para se estimar um valor para a variância condicional em um período t+i, em outras palavras, está é a fórmula para prever a volatilidade dos próximos períodos.

5

Utilizaremos o log-retorno devido a suas propriedades estatísticas, como a estacionariedade, para calcular os retornos da série temporal.

6

A aplicação em Python

A estimação dos parâmetros e o cálculo para prever a volatilidade serão feitos a seguir, utilizaremos o ambiente do Google Colab e a cotação do dólar será o nosso objeto de estudo.

 

Inicialmente temos que instalar e importar os pacotes que iremos utilizar:

 

 

#Instalação e importação dos pacotes para os buscar os dados e as funções do modelo

!pip install quandl

!pip install arch

import quandl as qdl

from arch import arch_model

 

#Importação de bibliotecas matemáticas e de ciência de dados

import numpy as np

import pandas as pd

 

#Pré definição das configuração dos gráficos

import seaborn as sns

sns.set()

import matplotlib as mpl

mpl.rcParams[‘figure.figsize’] = (155)

 

 

 

Utilizamos o pacote quandl para buscar os dados das cotações do dólar.

 

 

#Definição dos dados

dolar = qdl.get(‘BCB/1’, start_date = ‘2000-01-01’)

 

#Visualização do gráfico das cotações

dolar.rename(columns={“Value”“USD”}, inplace=True)

dolar.plot()

 

 

 

 

#Visualização do gráfico dos retornos

dolar_ret = np.log(dolar/dolar.shift(1)).dropna()

dolar_ret.plot()

 

 


Para esta análise será necessário padronizar os retornos, subtraindo-os de sua média esperada e dividindo pelo seu desvio padrão.

 

 

#Padronização dos retornos

dolar_m = dolar_ret.values.mean()

dolar_dp = dolar_ret.values.std()

dolar_ret_p = (dolar_ret – dolar_m)/dolar_dp

 

 

 

Para estimar um modelo do tipo GARCH, selecionamos a função arch_model do pacote arch instalado anteriormente. A função arch_model pode especificar um modelo GARCH em vez do modelo ARCH se informamos o modelo de volatilidade a ser utilizado, especificando o seguinte argumento da função  vol = ‘GARCH’, assim como os argumentos de defasagem p=1 e q=1 para determinar um modelo GARCH(1,1):

 

 

#Aplicação do Modelo GARCH(1,1) aos dados e vizualização dos resultados

garch_model = arch_model(dolar_ret_p, p=1, q=1, vol=‘GARCH’, dist=‘Normal’)

resultados = garch_model.fit(disp=‘off’)

print(resultados.summary())

 


 

 

#Previsão da volatilidade

resultados_forecast = resultados.forecast(horizon=5)

print(resultados_forecast.variance[-1:])


Cada coluna “h.n” da saída da previsão corresponde a n d períodos a frente, neste caso n dias a frente. A saída é alinhada para que a coluna “Date” represente os dados finais usados para gerar a previsão, de modo que “h.1” na linha “2020-05-29” seja a previsão da volatilidade condicional esperada de um dia à frente, feita usando dados até 29 de meio de 2020.

 

O gráfico hedgehog a seguir mostra os métodos de previsão ao longo do período analisado.
As linhas laranja indicam as previsões em diferentes intervalos de tempo.

 

 

#Visualização do gráfico hedgehog

g_previsões = resultados.hedgehog_plot()




Python Guide for Introductory Econometrics for Finance | Ran Tao & Chris Brooks
Value at Risk: Managing Financial Risk | Philippe Jorion
GARCH Models in Python | Chelsea Yang
Forecast volatility with GARH(1,1) https://youtu.be/oDXw0r0Oqmk
Quandl Data to Python | https://www.quandl.com/tools/python

    


Link para visualizar a programação no Google Colab

https://colab.research.google.com/drive/1cDbLT0vHapiaOqT1ACrTnGfWTqb16xm6?usp=sharing


Posted by Andreza Menezes in Derivativos & Riscos, 3 comments
Calibrando um SVI

Calibrando um SVI

Neste post iremos mostrar como fazer uma calibração de um smile SVI baseado nos trabalhos de (Gatheral 2004) e (De Marco and Martini 2009). Escolheremos apenas uma fatia da superfície de volatilidade, fixando o tempo para expiração (maturidade) e coletando as volatilidades implícitas para diversos strikes.

Como já apresentado em posts anteriores, existem diversas formas de interpolar, extrapolar, parametrizar e calibrar smiles de volatilidade. Exsitem vantagens e desvantagens para cada método. Neste post iremos fixar nossa atenção no modelo paramétrico de smile chamado SVI – Stochastic Volatility Inspired – uma forma que une a “simplicidade” de um modelo paramétrico com o poder de adesão aos dados de mercado dos modelos de volatilidade estocástica (i.e. Heston, SABR e afins).

Chamar o modelo SVI de simples é puro eufemismo, ele é um modelo poderoso, com fundamento teórico avançado e diversos detalhes para sua calibração.

Modelo SVI

Este modelo foi apresentado por Jim Gatheral na conferência Global Derivatives & Risk Management 2004 e foi bem recebido pelos profissionais de mercado interessados em superfícies de volatilidade para equities, principalmente.

O modelo possui duas propriedades que são as razões para sua popularidade. Ele satisfaz a fórmula do momento de Lee (2004), que é um resultado independente de modelo que especifica os limites assintóticos para um smile de volatilidade implícita. Portanto, o modelo SVI é válido para extrapolação além da região central dos dados disponíveis. Além disso, afirma-se que o modelo SVI é relativamente fácil de calibrar para dados de mercado, de modo que a superfície de volatilidade implícita correspondente é livre de arbitragem de calendário. As condições que garantem a ausência de arbitragem de borboleta forma resolvidas em um segundo artigo por Gatheral and Jacquier (2014).

No SVI é possível se estabelecer condições explícitas em seus parâmetros, de modo que o modelo não gere preços onde oportunidades de arbitragem estáticas possam ocorrer. A calibração para dados reais de mercado requer algoritmos de otimização não-linear e pode ser bastante demorada. Mais recentemente, um método para calibração que usa a estrutura inerente do modelo para reduzir as dimensões do problema de otimização foi desenvolvido em De Marco and Martini (2009).

A parametrização conhecida como RAW do SVI é apresentada na equação (1), seguindo a notação já introduzida anteriormente, portanto, estamos modelando a variância total implícita para um determinado prazo. Para diferentes maturidades, teremos diferentes conjuntos de parâmetros.

\[\begin{equation} w(k) = a + b\left(\rho(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right) \tag{1} \end{equation}\]

onde: \(a \in \mathbb R\), \(b \geq 0\), \(|\rho| < 1\), \(m \in \mathbb R\), \(\sigma > 0\), e \(a+b \sigma\sqrt{1 − \rho^2} \geq 0\) para garantir que \(\min w(k)>0, \, \forall k \in \mathbb R\).

Restrições de não-arbitragem

Antes de demonstrar a restrição imposta aos parâmetros \(b\) e \(\rho\) em função dos limites de inclinação das asas do smile, vamos derivar as expressões para \(w\prime(k)\) e \(w\prime\prime(k)\) que nos serão úteis na demonstração.

A expressão para \(w\prime(k)\) é bastante simples:

\[\begin{equation} w\prime(k) = b \left[\rho + \frac{(k-m)}{\sqrt{(k-m)^2+\sigma^2}}\right] \tag{2} \end{equation}\]

Derivando novamente a equação (2) em relação a \(k\) teremos uma expressão ainda mais simples, mesmo que após alguma manipulação algébrica um tanto tediosa1, e resulta em:

\[\begin{equation} w\prime\prime(k)=\frac{b\sigma^2}{[(k-m)^2+\sigma^2]^{3/2}} \tag{3} \end{equation}\]

onde, se considerarmos \(b>0\) temos que \(w\prime\prime(k)>0, \,\forall k\in \mathbb R\), ou seja, o smile de volatilidade definido pela equação (1) é estritamente convexo.

Rogers and Tehranchi (2010) definiram os limites possíveis para a inclinação das asas em função do tempo para expiração, provando que o smile tende a ficar mais horizontal a medida que o prazo aumenta. Este limite pode ser escrito da seguinte forma e é uma condição necessária para a ausência de arbitragem:

\[\begin{equation} |w\prime(k)|\leq \frac{4}{\tau} \qquad \forall k \in \mathbb R, \quad \forall \tau \in (0, \infty) \tag{4} \end{equation}\]

Sendo o smile convexo, suas máximas inclinações ocorrem quando \(k\rightarrow \pm \infty\). Portanto, deve-se avaliar a restrição dada pela equação (4) nestes limites da seguinte maneira:

\[\begin{align} \lim\limits_{k\rightarrow\infty}w\prime(k)&=b(1+\rho)\geq 0\\ \lim\limits_{k\rightarrow-\infty}w\prime(k)&=-b(1-\rho)\leq 0 \end{align}\]

que satisfazendo estas duas relações ao mesmo tempo em que se restringe os parâmetros \(b\) e \(\rho\) através da inequalidade de Rogers e Tehranchi nos garante o seguinte resultado para um SVI livre de arbitragem de travas.

\[\begin{equation} b(1+|\rho|)\leq\frac{4}{\tau} \tag{5} \end{equation}\]

Para garantir que a superfície gerada está livre de arbitragem do tipo borboleta deve-se primeiramente definir uma função2 \(g: \mathbb R\rightarrow \mathbb R\), tal que:

\[\begin{equation} g(k)=\left(1-\frac{kw\prime(k)}{2w(k)}\right)^2-\frac{w\prime(k)^2}{4}\left(\frac{1}{w(k)}+\frac{1}{4}\right)+\frac{w\prime\prime(k)}{2} \tag{6} \end{equation}\]

e seguir o lema :

Lema 1 Uma fatia da superfície de volatilidade está livre de arbitragem do tipo borboleta se, e somente se, \(g(k) \geq 0\) para todo \(k \in \mathbb R\) e \(\lim\limits_{k\rightarrow+\infty}d_1(k)=-\infty\).

Infelizmente, a natureza altamente não-linear da função \(g(k)\) impossibilita a derivação de restrições gerais aos parâmetros do SVI. A forma mais simples de eliminar arbitragem do tipo borbobleta é incluir a restrição \(g(k) \geq 0\) na função perda e proceder com a calibração dos parâmetros.

Reparametrização Quasi-explicit

Um dos problemas mais marcantes com a calibração do SVI dado pela equação (1) é sua natureza altamente não-linear que gera inúmeros pontos de mínimo locais. Mesmo em um ambiente simulado, um típico otimizador de mínimos quadrados como Levenberg-Marquardt não consegue chegar ao mínimo global, onde a função perda é igual a zero. A solução encontrada é dependente dos valores iniciais inputados ao otimizador e a robustez do conjunto de parâmetros encontrados não é garantida.

Uma forma de contornar este problema pode ser a utilização de otimizadores globais, como algortimos genéticos, em um primeiro estágio e então o refinamento desta solução através de um otimizador local (LM, por exemplo).

Outra forma, adotada em De Marco and Martini (2009) é a reparametrização da equação (1) de forma que esta possa ser tratada como um prolema linear. Para tanto, considere a seguinte troca de variáveis:

\[\begin{equation} y = \frac{k-m}{\sigma} \end{equation}\]

então a parametrização RAW do SVI se torna.

\[\begin{equation} w(y) = a + b\sigma\left(\rho y + \sqrt{y^2 + 1}\right) \end{equation}\]

Definindo agora as seguintes variáveis reparametrizadas é possível reduzir a dimensão de parâmetros de um SVI de 5 para apenas 3:

\[\begin{align} c = &b\sigma\\ d = &\rho b \sigma \end{align}\] \[\begin{equation} w(y)=a+dy+c\sqrt{y^2+1} \tag{7} \end{equation}\]

Portanto, para um par fixo de \((m, \sigma)\) nosso problema reduzido é:

\[\begin{equation} P_{m, \sigma}:=\min\limits_{a, c, d \in D}f_y(a, c, d) \tag{8} \end{equation}\]

onde \(f_y(\cdot)\) é a função objetivo da reparametrização, e é dada pela seguinte equação:

\[\begin{equation} f_y(a, c, d)=\sum_{i=1}^{n}\left[w(y_i)-\tilde w_i\right]^2 \tag{9} \end{equation}\]

onde \(\tilde w_i\) é a variância total observada correspondente ao moneyness \(k_i\).

O domínio \(D\) dos parâmetros \(\{a, c, d\}\) é encontrado a partir do limite imposto por (5).

\[\begin{equation} D = \begin{cases} 0 \leq c \leq 4\sigma\\ |d| \leq c \quad \text{e}\quad |d| \leq 4\sigma – c\\ 0 \leq a \leq \max\{\tilde w_i\}\\ \end{cases} \tag{10} \end{equation}\]

O problema reduzido dado pela equação (8), é um típico problema de mínimos quadrados com restrições lineares. Este problema, por ser convexo, admite uma única solução interior (se existente) que será o mínimo global para este problema e é encontrada através do gradiente da função objetivo igualando-o a zero, \(\nabla f_y = 0\). Esta equação gera um sistema linear nos parâmetros \(a, c, d\) que pode ser explicitamente resolvido. Caso a solução encontrada para este problema esteja contida no domínio \(D\), esta solução é interior e é o mínimo desejado, caso contrário, deve-se percorrer o perímetro do domínio e encontrar o menor valor da função objetivo que será uma solução de canto.

Seja \((a^*, c^*, d^*)\) a solução de (8) e \((a^*, b^*, \rho^*)\) os correspondentes parâmetros originais recuperados, então o problema completo de calibração é:

\[\begin{equation} P:=\min\limits_{m, \sigma}\sum_{i=1}^n (w_*(k_i)-\tilde w_i)^2 \tag{11} \end{equation}\]

onde \(w_*(k)=a^*+b^*\left(\rho^*(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right)\).

O problema completo, (11) é um problema em apenas duas dimensões, \((m, \sigma)\) e não-linear, que deve ser abordado através de algum tipo de otimizador global.

Solução explícita do problema reduzido

Nesta seção apresentaremos a solução, sem considerar as restrições impostas em (10) para o problema reduzido em (8), algo omitido em De Marco and Martini (2009). Esta seção é opcional para o leitor atento que já percebeu a semelhança entre o problema reduzido e um típico problema de regressão linear múltipla.

Para encontrar o conjunto de parâmetros \((a^*, c^*, d^*)\) que representam os valores ótimos na equação (8), devemos resolver o seguinte sistema de equações:

\[\begin{equation} \nabla f_y = \left[ \begin{array}{c} \partial f_y / \partial a\\ \partial f_y / \partial d\\ \partial f_y / \partial c \end{array} \right] = \boldsymbol{0} \tag{12} \end{equation}\]

Cada uma das derivadas parciais da equação acima quando igualadas a zero dão origem ao sistema linear apresentado abaixo:

\[\begin{equation} \scriptsize \begin{bmatrix} &n &\sum y_i &\sum\sqrt{y_i^2+1}\\ &\sum y_i &\sum y_i^2 &\sum(y_i\sqrt{y_i^2+1})\\ &\sum\sqrt{y_i^2+1} &\sum(y_i\sqrt{y_i^2+1}) &\sum(y_i^2+1)\\ \end{bmatrix} \cdot \begin{bmatrix} a \\ d \\ c \end{bmatrix} = \begin{bmatrix} \sum\tilde w_i \\ \sum \tilde w_i y_i \\ \sum(\tilde w_i\sqrt{y_i^2+1}) \end{bmatrix} \tag{13} \end{equation}\]

Portanto, o problema reduzido pode ser resolvido através de um sistema linear de ordem 3 sob restrições também lineares.

Algoritmo

A otimização para encontrar os parâmetros ótimos de um SVI dadas observações de mercado e a técnica de calibração Quasi-explicit de De Marco and Martini (2009) pode ser resumida nos seguintes passos:

  1. Definir valores iniciais para os parâmetros \((m, \sigma)\),

  2. Iniciar algum otimizador global com estes parâmetros e resolver o problema completo (11)

    2.1 Dentro da otimização global, resolver o problema reduzido (8) para os parâmetros \((m, \sigma)\) dados,

  3. Na convergência do problema completo do passo 2, otimizar uma última vez o problema reduzido,

  4. Recuperar os parâmetros \((a, b, \rho, m, \sigma)\)

A escolha dos otimizadores fica a cargo pessoal, sendo sugerido testar vários para o mesmo problema. Eventualmente, para um determinado smile um otimizador pode se mostrar melhor que outro que vinha sendo utilizado em outras ocasiões.

Nos testes realizados pelo Clube de Finanças, entre os otimizadores globais para o problema completo utilizamos Algoritmos Genéticos, Nelder-Mead restrito e um Método não-linear generalizado. Para o problema reduzido, apesar de ser linear, o método de Nelder-Mead restrito se mostrou tão eficiente quanto e de mais fácil implementação. Se o objetivo for fazer uma calibração direta, dos cinco parâmetros ao mesmo tempo, uma combinação de otimizador global em primeiro estágio e o método de Levenberg-Marquardt restrito para refinamento da solução é o ideal.

Resultados

A seguir apresentamos um smile de referência para a calibração, obtido de ivolatility.com e então partimos para diferentes técnicas de calibração de um SVI. Os códigos em R também estão apresentados ao longo do texto para melhor compreensão e estudo do leitor.

Os dados utilizados neste exemplo estão apresentados na tabela 1 abaixo. Esta é uma típica apresentação de um slice de superfície, ou seja, dados para um smile apenas. As principais variáveis são: a data em que os dados foram coletados (date), o preço de fechamento do ativo (stock_price), o prazo para expiração em dias (period), e medidas de moneyness como delta, strike e o próprio moneyness, além é claro da volatilidade implícita (iv) retirada do mercado.

Tabela 1: Dados reais para exemplo de calibração de uma SVI.
date symbol exchange stock_price_for_iv period delta moneyness strike iv
2017-09-21 IWM NYSEArca 143.73 30 10 0.03 148.41 0.09
2017-09-21 IWM NYSEArca 143.73 30 15 0.03 147.49 0.09
2017-09-21 IWM NYSEArca 143.73 30 20 0.02 146.80 0.09
2017-09-21 IWM NYSEArca 143.73 30 25 0.02 146.21 0.09
2017-09-21 IWM NYSEArca 143.73 30 30 0.01 145.69 0.09
2017-09-21 IWM NYSEArca 143.73 30 35 0.01 145.19 0.10
2017-09-21 IWM NYSEArca 143.73 30 40 0.01 144.69 0.10
2017-09-21 IWM NYSEArca 143.73 30 45 0.00 144.18 0.10
2017-09-21 IWM NYSEArca 143.73 30 50 0.00 143.66 0.10
2017-09-21 IWM NYSEArca 143.73 30 55 0.00 143.12 0.11
2017-09-21 IWM NYSEArca 143.73 30 60 -0.01 142.53 0.11
2017-09-21 IWM NYSEArca 143.73 30 65 -0.01 141.88 0.11
2017-09-21 IWM NYSEArca 143.73 30 70 -0.02 141.13 0.12
2017-09-21 IWM NYSEArca 143.73 30 75 -0.02 140.26 0.13
2017-09-21 IWM NYSEArca 143.73 30 80 -0.03 139.16 0.13
2017-09-21 IWM NYSEArca 143.73 30 85 -0.04 137.66 0.14
2017-09-21 IWM NYSEArca 143.73 30 90 -0.06 135.32 0.16

Esta tabela poderia conter (de fato contém no arquivo original) outros períodos de expiração, e neste caso uma das colunas de moneyness começa a se repetir, no caso seria o delta pois baixamos uma tabela de volatilidades implícitas por delta. Assim, em uma tabela simples em formato tidy é possível armazenar informações de uma superfície inteira, a qual de outra forma necessitaria de um arranjo em 3 dimensões.

Ressaltamos aqui que a unidade de volatilidade implícita está em percentuais ao ano, equanto que nosso período é de dias corridos. É necessário harmonizar estas medidas de forma que, para volatiliades dadas em percentual ao ano, o período também seja dado em anos. Logo nosso \(\tau = 30/365\), ou seja, 0.08219.

Demonstraremos aqui os resultados para a calibração de uma RAW SVI pelos métodos “Direto”, “GA”, “Quasi-NM” e “Quasi-PQ”, abaixo explicados.

O método “Direto” é uma calibração direta através de um algoritmo de Levenberg-Marquardt da equação (1), ou seja, não existe reparametrização Quasi-explicit e o problema resolvido é não-linear em 5 dimensões. São realizadas 10 calibrações com estimativas iniciais dos parâmetros aleatórias, mas dentro de seus respectivos domínios. A melhor solução, aquela com o menor valor para a função objetivo, é selecionada. Todos os outros métodos utilizam a reparametrização, ocorrendo variações apenas nos algoritmos de otimização utilizados nos problemas reduzido e completo.

A calibração “GA” faz uso do otimizador global de algoritmos genéticos para o problema completo, ou seja, para estimar o par \((m, \sigma)\) que corresponde ao mínimo global. Após, o problema reduzido é resolvido através do algoritmo de Nelder-Mead. Este método é robusto, pois o algoritmo genético tem grande probabilidade de encontrar a região onde se encontra o mínimo global e não ficar preso localmente. Entretanto a robustez ocorre as expensas do tempo de computação.

Os métodos ditos “Quasi” diferem entre si na resolução do problema reduzido. Enquanto “PQ” remete a programação quadrática e faz uso da resolução do sistema linear apresentado na equação (13) com as restrições impostas por (10), o método “Quasi-NM” utiliza o método de Nelder-Mead com restrições para a resolução deste mesmo problema reduzido. Em ambos os métodos, o problema completo é resolvido com um algoritmo de Nelder-Mead com 50 reinicializações das estimativas iniciais dos parâmetros \((m, \sigma)\), o que causa algum impacto no tempo de computação destes métodos.

smile <- dados %>% 
  mutate(tau = period / 365) %>% 
  select(moneyness, iv, tau)

par_names <- factor(c("a", "b", "$\\rho$", "m", "$\\sigma$"),
                    levels = c("a", "b", "$\\rho$", "m", "$\\sigma$"))
k <- smile$moneyness
w <- smile$iv^2 * smile$tau

init_direct <- proc.time()
par_direct <- svi_fit_direct(k, w)
end_direct <- proc.time()
time_direct <- end_direct - init_direct 

init_ga <- proc.time()
par_ga <- svi_fit_ga(k, w)
end_ga <- proc.time()
time_ga <- end_ga - init_ga 

init_quasipq <- proc.time()
par_quasipq <- svi_fit_quasi(k, w, inner = "quadprog")
end_quasipq <- proc.time()
time_quasipq <- end_quasipq - init_quasipq 

init_quasinm <- proc.time()
par_quasinm <- svi_fit_quasi(k, w)
end_quasinm <- proc.time()
time_quasinm <- end_quasinm - init_quasinm 

iv_direct <- sqrt(svi_fun(par_direct$par[[1]], k) / smile$tau)
iv_ga <- sqrt(svi_fun(par_ga$par[[1]], k) / smile$tau)
iv_quasipq <- sqrt(svi_fun(par_quasipq$par[[1]], k) / smile$tau)
iv_quasinm <- sqrt(svi_fun(par_quasinm$par[[1]], k) / smile$tau)

plot_tbl <- tibble(k = k,
              Direct = iv_direct,
              GA = iv_ga,
              QuasiPQ = iv_quasipq,
              QuasiNM = iv_quasinm,
              observed = smile$iv) %>% 
  gather(key = method, value = iv, -c(k, observed))

par_tbl <- bind_rows(par_direct, par_ga, par_quasipq, par_quasinm) %>% 
  select(method, par) %>% 
  unnest() %>% 
  mutate(names = rep(par_names, 4)) %>% 
  spread(method, par) %>% 
  select(names, Direct, GA, QuasiPQ, QuasiNM) %>% 
  mutate(names = as.character(names)) %>% 
  mutate_at(vars(Direct:QuasiNM), arred)

rmse_tbl <- bind_rows(par_direct, par_ga, par_quasipq, par_quasinm) %>% 
  select(method, par) %>% 
  unnest() %>% 
  group_by(method) %>% 
  summarise(RMSE = rmse(par, k, w)) %>% 
  spread(method, RMSE) %>% 
  mutate(names = "RMSE") %>% 
  select(names, Direct, GA, QuasiPQ, QuasiNM) %>% 
  mutate_at(vars(Direct:QuasiNM), format, digits = 3, scientific = TRUE)

time_tbl <- tibble(method = c("Direct", "GA", "QuasiPQ", "QuasiNM"),
                   time = rbind(time_direct, time_ga, 
                                time_quasipq, time_quasinm)[, 3]) %>% 
  spread(method, time) %>% 
  mutate(names = "Tempo") %>% 
  select(names, Direct, GA, QuasiPQ, QuasiNM) %>% 
  mutate_at(vars(Direct:QuasiNM), arred)

frame_tbl <- bind_rows(par_tbl, rmse_tbl, time_tbl)

Abaixo é apresetanda uma tabela com os valores estimados para os parâmetros da SVI, o RMSE (root mean square error) e o tempo total em segundos para a calibração. Aqui o RMSE é definido como \(\sqrt{1/n\sum(w(k_i)-\tilde w_i)^2}\) e nos fornece um valor típico de erro na variância.

kable(frame_tbl,
      col.names = c("Estimativa", "Direto", "GA", 
                    "QuasiPQ", "QuasiNM"),
      caption = "Parâmetros estimados da calibração, RMSE e tempo de computação em segundos.") %>% 
  kable_styling(bootstrap_options = "striped",
                font_size = 20,
                full_width = FALSE)
Tabela 2: Parâmetros estimados da calibração, RMSE e tempo de computação em segundos.
Estimativa Direto GA QuasiPQ QuasiNM
a 0.00000 0.00000 0.00000 0.00011
b 0.01964 0.01952 0.01651 0.01870
\(\rho\) -0.81157 -0.80220 -1.00000 -0.90090
m -0.00861 -0.00773 -0.01131 -0.01145
\(\sigma\) 0.05101 0.05039 0.07100 0.05027
RMSE 8.71e-06 8.68e-06 9.62e-05 1.02e-05
Tempo 0.11800 24.93800 0.14100 5.94600

O método Direto, com algoritmo de Levenberg-Marquardt se mostrou muito mais rápido que os demais, principalmente com relação ao algoritmo genético, e com um bom ajuste dado o baixo valor de RMSE. O algoritmo genético é consideravelmente mais lento, entretanto durante as várias calibrações realizadas em testes (e que não estão apresentadas na tabela 2), este algoritmo sempre se mostrou robusto, com baixo RMSE, diferentemente dos outros métodos que por vezes, denpendendo das estimativas iniciais, podem convergir para um mínimo local.

O gráfico com os ajustes realizados pode ser observado abaixo.

ggplot(plot_tbl, aes(x = k)) + 
  geom_point(aes(y = observed)) +
  geom_line(aes(y = iv, color = method)) +
  guides(color = guide_legend(title = "")) +
  labs(title = "",
       x = "Forward log-moneyness",
       y = "Volatility",
       caption = "") +
  scale_y_continuous(labels = scales::percent) +
  scale_color_viridis_d() +
  theme_economist_white()
Comparação entre diferentes métodos de calibração de uma SVI.

Figura 1: Comparação entre diferentes métodos de calibração de uma SVI.

De fato o método direto e o método Quasi-explicit com otimizador global do tipo algoritmo genético se mostram mais adequados para a calibração de um SVI. Enquanto o método direto é muito mais eficiente em termos computacionais, o método Quasi-explicit com GA é mais robusto. Desta forma, deve-se salientar que é necessário que o usuário, ao fazer uma calibração de smile de volatilidade, deve dispor de diferentes métodos de fazê-lo, e a inspeção visual do resultado é obrigatória para determinar qual método foi mais eficiente em ajustar a curva aos dados.

Conclusão

Apesar de neste exemplo ter se mostrado um método efetivo, com bom ajuste e baixo tempo de calibração, o método direto é altamente dependente dos valores iniciais dos parâmetros. Para tornar este método mais robusto, um número maior de reinicializações deve ser feita o que penaliza o tempo de calibração. O método Quasi-explicit com algoritmo genético para encontrar a região de \((m, \sigma)\) onde se encontra o mínimo global se mostrou bastante robusta, entretanto, de convergência lenta. Para ajustar apenas um smile alguns segundos a mais não representam problema. Porém, se imaginarmos que em uma grande instituição financeira são necessárias calibrações de, talvez, milhares de smiles representando inúmeras superfícies de diversos instrumentos, este método pode se mostrar computacionalmente caro.

Já os métodos Quasi-explicit que utilizam um algoritmo de Nelder-Mead para a resolução do problema completo se mostraram muito sensíveis às estimativas iniciais dos parâmetros. Mesmo utilizando 50 reinicialzações do método, diversas vezes o ajuste realizado foi insatisfatório. A resolução através de programação quadrática é rápida, se comparada com NM, entretanto, quando as restrições impostas pela equação (10) se tornam ativas, este método parece sofrer com algum viés em sua solução.

Referências

De Marco, S, and C Martini. 2009. “Quasi-Explicit Calibration of Gatheral’s Svi Model’.” Zeliade White Paper, 1–15.

Gatheral, Jim. 2004. “A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation of Volatility Derivatives.” Presentation at Global Derivatives & Risk Management, Madrid.

Gatheral, Jim, and Antoine Jacquier. 2014. “Arbitrage-Free Svi Volatility Surfaces.” Quantitative Finance 14 (1). Taylor & Francis: 59–71.

Lee, Roger W. 2004. “The Moment Formula for Implied Volatility at Extreme Strikes.” Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 14 (3). Wiley Online Library: 469–80.

Rogers, Leonard CG, and MR Tehranchi. 2010. “Can the Implied Volatility Surface Move by Parallel Shifts?” Finance and Stochastics 14 (2). Springer: 235–48.

  • A resolução desta derivada é uma simples regra da divisão, entretanto a simplificação do resultado pede alguma manipulação algébrica. É possível utilizar sistemas de computação simbólica, o qual recomendamos o SymPy

  • Condições para ausência de arbitragem do tipo borboleta em um SVI estão detalhadas na seção 2.2 do artigo de Gatheral and Jacquier (2014).

    Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments
    Superfícies de Volatilidade

    Superfícies de Volatilidade

    2019/02/01

    Já mostramos em artigos anteriores, processos estocásticos em finanças, o modelo de Black&Scholes e, como na realidade dos mercados surgem os smiles de volatilidade em duas partes, uma anomalia não prevista por B&S. Dado que este modelo não pode explicar o surgimento do smile de volatilidade e tampouco sua superfície, o estudo da volatilidade implícita tornou-se uma preocupação central nas finanças. Diversos modelos de superfícies de volatilidade foram propostos ao longo dos anos, e ainda o são, para buscar conciliar a presença do smile de volatilidade e a natureza estocástica da precificação do ativo subjacente.

    Apresentaremos alguns poucos destes modelos.

    Modelos estocásticos

    Volatilidade estocástica apresenta a noção que a volatilidade instantânea do ativo subjacente também é, por si só, um processo estocástico que pode ser correlacionado com o processo de formação do preço do ativo. O resultado destes modelo é um procedimento livre de arbitragem para a interpolação dos dados de mercado a superfície de volatilidade.

    Heston

    O modelo de Heston, baseado no trabalho de Heston (1993), assume que o quadrado da volatilidade segue uma equação diferencial estocástica – EDE – do tipo Cox-Ingersoll-Ross – CIR, a qual apresenta características desejáveis do ponto de vista da variância. Abaixo estão as três equações que definem um modelo de Heston:

    \[\begin{equation} \begin{aligned} dS_t=&\mu S_t dt + \sqrt{v_t}S_t dW_1\\ dv_t=&-\lambda(v_t-\bar v)dt+\eta\sqrt{v_t}dW_2\\ d\left\langle W_1, W_2 \right\rangle=&\rho dt \end{aligned} \tag{1} \end{equation}\]

    onde \(v_t\) é a variância estocástica, \(\lambda\) é o parâmetro que define a velocidade de convergência da volatilidade para seu valor de longo prazo \(\bar v\), \(\eta\) é a famigerada volatilidade da volatilidade e a notação \(d\left\langle W_1, W_2 \right\rangle\) indica a covariação entre os movimentos Brownianos padrões \(dW_1\) e \(dW_2\).

    Esta modelagem apresenta uma característica desejável, e até certo ponto, intuitiva para a volatilidade, o retorno a uma média de longo prazo. Empiricamente observamos regimes distintos de volatilidade para os ativos financeiros, em alguns momentos a volatilidade está anormalmente baixa ou durante momentos de estresse no mercado, incrivelmente alta. Porém não faria sentido um modelo onde a volatiliade pudesse estacionar permanentemente no limite inferior ou então divergir para infinito. O modelo de Heston garante que, mesmo sendo estocástica, a volatilidade não é atraída para estes extremos.

    Os preços das calls e puts européias possuem fórmula fechada para seu cômputo através da transformada de Fourier, como apresentado no artigo original. A complexidade destas equações e do método para sua resolução está fora do escopo deste blog, entretanto o leitor aficcionado pode encontrar uma demonstração da forma de resolução em Gatheral (2011).

    Basta-nos saber que em um framework geral de precificação de derivativos, o preço de uma call não descontada (preço de Black) pode ser escrita da seguinte forma:

    \[\begin{equation} C_B(x, v, \tau)=K\left[e^xP_1(x, v, \tau)-P_0(x, v, \tau)\right] \tag{2} \end{equation}\]

    onde \(x:=\ln K/F_t\). \(P_1\) e \(P_0\) são duas probabilidades na medida neutra ao risco, \(\mathbb Q\). Enquanto \(e^xP_1\) informa o valor esperado do ativo no vencimento dado que a opção está no dinheiro, \(P_0\) representa a probabilidade de ficar dentro do dinheiro na data de expiração.

    As probabilidades \(P_j\), \(j = 0, 1\) podem ser calculadas através da seguinte equação:

    \[\begin{equation} P_j(x, v, \tau)=\frac{1}{2}+\frac{1}{\pi}\int\limits_0^\infty Re\left\lbrace\frac{exp\{C_j(u, \tau)\bar v + D_j(u, \tau)v + iux\}}{iu}\right\rbrace du \tag{3} \end{equation}\]

    onde \(i\) representa o número imaginário \(\sqrt{-1}\) e \(Re\{\cdot\}\) é apenas a parte real de seu argumento.

    Primeiramente vamos definir algumas variáveis auxiliares:

    \[\alpha_j=-\frac{u^2}{2}-\frac{iu}{2}+jiu\]

    \[\beta_j=\lambda-j\rho\eta-\rho\eta i u\]

    \[\gamma=\frac{\eta^2}{2}\]

    \[r_{\pm}=\frac{\beta_j\pm\sqrt{\beta^2-4\alpha\gamma}}{2\gamma}=\frac{\beta\pm d}{\eta^2}\]

    \[d=\sqrt{\beta^2-4\alpha\gamma}\]

    \[g=\frac{r_-}{r_+}\]

    Então:

    \[C_j(u, \tau)=\lambda\left\lbrace r_-\tau-\frac{2}{\eta^2}\ln\left(\frac{1-ge^{-d\tau}}{1-g}\right) \right\rbrace \tag{4}\]

    \[D_j(u, \tau)=r_-\frac{1-e^{-d\tau}}{1-ge^{-d\tau}} \tag{5}\]

    SABR

    Este modelo foi apresentado por Hagan et al. (2002) e assume que o preço forward, \(F_t\) do ativo subjacente e sua volatilidade instantânea, \(\alpha_t\), seguem as seguintes EDEs:

    \[ \begin{aligned} dF_t=&\alpha_tF_t^\beta dW_1\\ d\alpha_t=&\nu\alpha_t dW_2\\ d\left\langle W_1, W_2 \right\rangle =&\rho dt \end{aligned} \tag{6} \]

    onde \(\nu > 0\) é a volatilidade da volatilidade e \(\beta > 0\) é conhecido como o coeficiente de alavancagem.

    A interpretação financeira se dá pela seguinte maneira: \(\alpha_t\) determina o nível geral de volatilidade do forward no dinheiro, \(\beta\) mede a assimetria do smile sendo as duas escolhas particulares: \(\beta = 1\) correspondendo ao modelo log-normal sem smile e \(\beta = 0\) correspondendo ao modelo normal com um smile irrealista, \(\rho\) também controla a inclinação do smile, quando \(\rho < 0\) uma inclinação negativa típica de equities surge e com a opção \(\rho = 0\) produzindo um smile de volatilidade simétrico, por fim, \(\nu\) é uma medida de convexidade. Também é possível verificar que a volatilidade estocástica, \(\alpha_t\) segue uma distribuição log-normal.

    Comparado com outros modelos de volatilidade estocástica, o SABR é um dos mais simples e possui aproximações analíticas para o cálculo do preço de opções Europeias. Ele pode ser utilizado para ajustar um smile observado no mercado de forma acurada, entretanto, para ajustar uma superfície completa este modelo sofre com algumas restrições.

    Bates

    Em modelos de difusão como B&S e mesmo Heston, o processo de formação de preço do ativo se comporta como um movimento browniano e a probabilidade de que este preço se mova bruscamente em um curto período de tempo é muito pequena. Assim, em tais modelos, os preços das opções OTM mais curtas são muito inferiores ao que se observa nos mercados reais.

    Para endereçar esta deficiência, Bates (1996) amplia o modelo de Heston incluindo saltos no processo de preço do ativo subjacente. Estes modelos, com a inclusão de saltos aleatórios na dinâmica de preços são conhecidos como Jump-Diffusion. A dinâmica é especificada pelas seguintes equações:

    \[\begin{equation} \begin{aligned} dS_t=&\mu S_tdt+\sqrt{v_t}S_tdW_1(t)+J_t S_t dN_t\\ dv_t=&-\lambda(v_t-\bar v)dt+\eta\sqrt{v_t}dW_2(t)\\ d\left\langle W_1, W_2 \right\rangle =&\rho dt \end{aligned} \tag{7} \end{equation}\]

    Muito semelhante, portanto ao modelo de Heston nas equações (1), com a diferença da inclusão de um processo de Poisson, \(dN_t\) com intensidade \(\theta\) indicando a probabilidade instantânea de um salto de tamanho unitário. \(J_t\) é o tamanho do salto aleatório e seu logaritmo segue uma distribuição gaussiana:

    \[\begin{equation} \ln{(1+J)}\sim N\left(\ln(1+\beta)-\frac{1}{2}\alpha^2\,\, ,\,\,\alpha^2\right) \tag{8} \end{equation}\]

    Este modelo possui fórmulas fechadas para os preços de calls e puts, novamente utilizando-se o método da transformada de Fourier, que podem ser encontrados utilizando o método de Duffie, Pan, and Singleton (2000).

    Volatilidade local

    Conforme visto neste artigo anterior sobre o smile de volatilidade, é possível a partir das volatilidades implícitas obter a distribuição neutra ao risco do preço terminal do ativo subjacente. O pesquisador e profissional de mercado Bruno Dupire em seu artigo, Dupire (1994), fez então o seguinte questionamento: dada uma distribuição implícita, existe apenas um processo de difusão1 que seja consistente com esta distribuição? A resposta obtida foi sim, e deste processo surge a função de volatilidade local, \(\sigma_L(S, t)\), por vezes também conhecida como função de volatilidade implícita.

    A equação de Dupire é apresentada abaixo:

    \[\frac{\partial C_B}{\partial \tau}=\frac{1}{2}\sigma_L^2K^2\frac{\partial^2C_B}{\partial K^2} \tag{9}\]

    da qual todos os termos podem ser obtidos a partir dos dados de mercado de uma superfície de volatilidade, com exceção é claro, da função de volatilidade local \(\sigma_L\) que poderá ser calculada. Esta equação pode ser vista como a definição da função de volatiliade local independente do processo que governa a evolução da volatilidade (um processo estocástico, por exemplo).

    Uma forma de interpretar a volatilidade, ou mais precisamente a variância local, é na forma de valor esperado dentro da medida neutra ao risco. Resultado devido a trabalho de Derman and Kani (1998), onde a equação de Dupire pode ser reescrita da seguinte forma:

    \[\frac{\partial C_B}{\partial \tau}=\mathbb E\left[v_T|S_T=K\right]\frac{1}{2}K^2\frac{\partial^2C_B}{\partial K^2} \tag{10}\]

    Ou seja, a variância local é a expectativa neutra ao risco da variância instantânea condicionada ao preço terminal do ativo, \(S_T\) ser igual ao preço de exercício \(K\).

    Uma das formas mais praticadas para a implementação de uma superfície de volatilidade local é através de árvores binomiais conforme apresentado por Derman and Kani (1994).

    Modelos paramétricos

    Diversas representações paramétricas já foram apresentadas para a superfície de volatilidade. Neste tipo de modelo uma função não-linear, dependente de um conjunto de parâmetros é especificada e, a partir dos dados observados no mercado, a parametrização é encontrada através da minimização de alguma função objetivo, método conhecido como calibração.

    SVI

    A parametrização da do tipo SVI (Stochastic Volatility Inspired) para o smile foi introduzida por Gatheral (2004) e é motivada pelo comportamento assintótico para strikes extremos. É baseada no smile gerado por um modelo de Heston (1993). Sua parametrização é dada em termos de forward log-moneyness conforme apresentado anteriormente, \(k=\ln(K/S)-r\tau=\ln(K/F)\), por:

    \[\begin{equation} w(k) = a + b\left(\rho(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right) \tag{11} \end{equation}\]

    onde \(w\) é a variância total e o conjunto de parâmetros \(\chi_R = \{a, b, \rho, m, \sigma\}\) definem a forma deste smile que é conhecido como parametrização raw do SVI. Os limites destes parâmetros são tais que: \(a \in \mathbb R\), \(b \geq 0\), \(|\rho| < 1\), \(m \in \mathbb R\), \(\sigma > 0\), e a condição “óbivia” segundo Gatheral and Jacquier (2014), \(a+b \sigma\sqrt{1 − \rho^2} \geq 0\), que garante \(w(k; \chi_R) \geq 0\) para todo \(k \in \mathbb R\). Alterações nestes parâmetros têm os seguintes efeitos:

    • Aumentar \(a\) eleva o nível geral de variância, um deslocamento vertical do smile
    • Aumentar \(b\) aumenta as inclinações das asas, comprimindo o smile
    • Aumentar \(\rho\) provoca uma rotação no sentido anti-horário
    • Aumentar \(m\) desloca o smile para a direita
    • Aumentar \(\sigma\) reduz a curvatura no dinheiro (ATM) do smile
    Duas parametrizações hipotéticas para a SVI.

    Figura 1: Duas parametrizações hipotéticas para a SVI.

    A figura 1 acima apresenta duas parametrizações hipotéticas para o modelo. A variância total \(w_1\) tem como conjunto de parâmetros, \(\chi = \{0, 0.5, -0.6, 0, 0.3\}\) e poderia representar um smile de taxas de câmbio por exemplo. Enquanto que o modelo \(w_2\) conta com \(\chi = \{-0.04, 0.5, -0.9, 0, 0.4\}\) e se ajusta melhor ao mercado de equities.

    Existem outras duas parametrizações para o SVI, a natural e a jump-wings que podem ser conferidas no artigo de Gatheral and Jacquier (2014) e serão abordadas em outro artigo a ser publicado futuramente pelo CF.

    O SVI tem muitas vantagens, como o baixo tempo computacional, a variância implícita se comporta linearmente nos extremos, conforme prescrito pela fórmula do momento de Lee (2004), e boa aproximação de volatilidades implícitas para strikes muito dentro ou fora do dinheiro. O ajuste do SVI para os mercados de equities é muito melhor do que para outros mercados.

    Modelos não-paramétricos

    Se violações de arbitragem na estimativa da superfície não representam um problema de interesse particular, virtualmente qualquer método não-paramétrico pode ser aplicado a dados de volatilidade implícita. Uma escolha específica deve ser feita a partir de considerações práticas.

    Interpolação e suavização spline

    As seguintes splines2 podem ser empregadas para interpolar smiles de volatilidade:

    • Spline cúbica
    • B-spline cúbica

    No caso da spline cúbica, esta é uma função polinomial de grau 3 definida em cada subintervalo demarcados pelos pontos de controle, no caso de interpolação são todos nós. Uma spline cúbica é uma função contínua, suave e diferenciável até a segunda ordem.

    Uma B-spline3, ou basis-spline é uma função básica para funções spline de mesma ordem, o que significa que todas as funções spline possíveis podem ser construídas a partir de uma combinação linear de B-splines. Estas podem ser preferidas às splines cúbicas, devido à sua robustez a dados ruins e à capacidade de preservar a monotonicidade e a convexidade.

    Praticamente qualquer linguagem de programação e até mesmo o Excel4 possui funções pré-programadas para implementar interpolações spline, sendo um método de fácil aplicação. Entretanto, estas técnicas de interpolação não são específicas para superfícies de volatilidade e, portanto, não garantem que a superfície interpolada seja livre de oportunidades de arbitragem, mesmo que os dados apresentados o sejam.

    Algoritmos livres de arbitragem

    Considerando as limitações das interpolações com relação a presença de arbitragem na superfície gerada, vários artigos propõe algoritmos de interpolação que garantem que oportunidades de arbitragem estática não se apresentem, como em Kahalé (2004) e Wang, Yin, and Qi (2004).

    Em comum, estes algoritmos possuem como requisito que os dados a serem interpolados sejam livres de arbitragem desde o início, o que nem sempre pode ser obtido. Kahalé (2004), por exemplo, propõe um procedimento de interpolação baseado em polinômios convexos por partes que simulam a fórmula de B&S. O resultado da função de preço de calls é livre de arbitragem e, portanto, também a volatilidade implícita calculada a partir dela. Em uma segunda etapa, a variância total implícita é interpolada linearmente ao longo dos strikes.

    A abordagem de Fengler (2012) é baseada na suavização dos preços das opções por spline cúbica, e não em interpolação. Desta forma, os dados de entrada não precisam ser livres de arbitragem. Restrições especificamente adicionadas ao problema de minimização, a fim de garantir que não haja arbitragem, são impostos ao algoritmo spline. Uma possível desvantagem dessa abordagem é o fato de que a função de preço calls é aproximada por polinômios. Isso pode se mostrar desvantajoso, especialmente se extrapolação for necessária, já que a função de precificação certamente não é um polinômio. A escolha de uma grade suficientemente densa nos strikes pode minimizar este problema.

    Extrapolação do smile

    É argumentado em Benaim, Dodgson, and Kainth (2008) que que um método de extrapolação deve resultar em preços livres de arbitragem para as opções europeias (baunilha), ou seja, os preços das opções devem ser funções decrescentes (crescentes) para calls (puts), convexas com relação ao strike, e permanecer dentro de certos limites de inclinação. Além disso, o método de extrapolação deve idealmente ter as seguintes propriedades:

    1. Deve precificar corretamente todas as opções baunilha observadas
    2. A densidade da distribuição implícita e os preços das opções baunilha devem ser fáceis de calcular
    3. O método não deve gerar caudas irrealistas e, se possível, deve permitir controlá-las
    4. Deve ser robusto e flexível o suficiente para ser usado com uma ampla variedade de superfícies de volatilidade implícita
    5. Deve ser fácil e rápido inicializar para um determinado smile

    Uma das formas de extrapolação comumente utilizada é fazer a interpolação dos dados dentro da área observada, por exemplo com splines cúbicas, e então fazer a extrapolação na forma de uma linha reta, ou seja, mantendo na região de extrapolação a mesma inclinação observada no último ponto interpolado. Esta forma, segundo os autores não é adequada pois insere uma descontinuidade na densidade e também gera caudas muito curtas, de fato truncadas, a partir do ponto onde se inicia a extrapolação.

    É proposto um método de extrapolação através de fórmulas fechadas para a asa esquerda (OTM puts) e direita (OTM call) do smile. Estas fórmulas têm as propriedades desejadas para strikes extremos e mantêm a convexidade dos preços. Suponha um intervalo de preços de exercício os quais existem observações de mercado e portanto, é possível fazer interpolação: \(K_-\leq K \leq K_+\), os valores das puts, \(P(K)\), para \(K e das calls, \(C(K)\), para \(K>K_+\) são dados por:

    \[\begin{equation} P(K)=K^\mu \exp\left(a_1+b_1K+c_1K^2\right) \tag{12} \end{equation}\] \[\begin{equation} C(K)=K^{-\nu} \exp\left(a_2+\frac{b_2}{K}+\frac{c_2}{K^2}\right) \tag{13} \end{equation}\]

    onde se garante \(\lim\limits_{K\rightarrow 0} P(K)=0\) e \(\lim\limits_{K\rightarrow \infty} C(K)=0\), fazendo \(\mu > 1\) e \(\nu > 0\). Estes parâmetros também servem para controlar a massa de probabilidade sob as caudas da distribuição.

    As condições para ajustar o preço e suas duas primeiras derivadas em \(K_-\) e \(K_+\) produz um conjunto de equações lineares para os parâmetros \(a_1, b_1, c_1\) e \(a_2, b_2, c_2\), respectivamente.

    Conclusão

    Repassamos neste artigos, algumas das principais metodologias para a construção da superfície de volatilidade implícita. Modelos de volatilidade estocástica são capazes de gerar smiles compatíveis com aqueles observados nos mercados, sendo dependentes de técnicas de calibração destes modelos. O modelo paramétrico SVI pode ser adequado para mercado de equities, entretanto, assim como acontece nas técnicas de interpolação, restrições com relação aos parâmetros devem ser impostas a fim de evitar o surgimento de oportunidades de arbitragem estática. Por fim uma estratégia de como implementar a extrapolação do smile fora da região central foi apresentada.

    Referências

    Bates, David S. 1996. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.” The Review of Financial Studies 9 (1). Oxford University Press: 69–107.

    Benaim, Shalom, Matthew Dodgson, and Dherminder Kainth. 2008. “An Arbitrage-Free Method for Smile Extrapolation.” Royal Bank of Scotland, Technical Report.

    Derman, Emanuel, and Iraj Kani. 1994. “The Volatility Smile and Its Implied Tree.” Goldman Sachs Quantitative Strategies Research Notes 7 (January).

    ———. 1998. “Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility.” International Journal of Theoretical and Applied Finance 01 (01): 61–110. doi:10.1142/S0219024998000059.

    Duffie, Darrell, Jun Pan, and Kenneth Singleton. 2000. “Transform Analysis and Asset Pricing for Affine Jump-Diffusions.” Econometrica 68 (6). Wiley Online Library: 1343–76.

    Dupire, Bruno. 1994. “Pricing with a Smile.” Risk 7 (1): 18–20.

    Fengler, Matthias R. 2012. “Option Data and Modeling Bsm Implied Volatility.” In Handbook of Computational Finance, 117–42. Springer.

    Gatheral, Jim. 2004. “A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation of Volatility Derivatives.” Presentation at Global Derivatives & Risk Management, Madrid.

    ———. 2011. The Volatility Surface: A Practitioner’s Guide. Vol. 357. John Wiley & Sons.

    Gatheral, Jim, and Antoine Jacquier. 2014. “Arbitrage-Free Svi Volatility Surfaces.” Quantitative Finance 14 (1). Taylor & Francis: 59–71.

    Hagan, Patrick S, Deep Kumar, Andrew S Lesniewski, and Diana E Woodward. 2002. “Managing Smile Risk.” The Best of Wilmott 1: 249–96.

    Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies 6 (2). Oxford University Press: 327–43.

    Kahalé, Nabil. 2004. “An Arbitrage-Free Interpolation of Volatilities.” Risk 17 (5): 102–6.

    Lee, Roger W. 2004. “The Moment Formula for Implied Volatility at Extreme Strikes.” Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 14 (3). Wiley Online Library: 469–80.

    Wang, Y, H Yin, and L Qi. 2004. “No-Arbitrage Interpolation of the Option Price Function and Its Reformulation.” Journal of Optimization Theory and Applications 120 (3). Springer: 627–49.

  • Processo de difusão é a solução de uma equação diferencial estocástica com propriedades de Markov. O Movimento Browniano é um exemplo.

  • Spline

  • B-Spline

  • Cubic Spline Function in VBA

    Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments
    Smile de Volatilidade parte 2

    Smile de Volatilidade parte 2

    2019/01/25

    Daremos continuidade ao artigo anterior sobre o smile de volatilidade. Falaremos sobre a estrutura a termo da volatilidade implícita, agregando uma segunda dimensão ao smile e transformando-o na famigerada superfície de volatilidade implícita. Também será definida o que é a arbitragem estática e seus tipos e como a limitação da presença de arbitragem estática impõe restrições na superfície de volatilidade. Por fim, será demonstrado como, a partir de um smile de volatilidade é possível derivar a distribuição implícita neutra ao risco do subjacente para data de expiração das opções.

    Estrutura a termo

    O mercado precifica a volatilidade implícita de forma que esta dependa também do tempo até expiração, bem como do preço de exercício.

    A volatilidade implícita tende a ser uma função crescente da maturidade quando as volatilidades de curto prazo são historicamente baixas e função decrescente da maturidade quando as volatilidades de curto prazo são historicamente altas. Isso porque existe uma expectativa de reversão a uma média de longo prazo embutida na volatilidade. Esta característica é explorada explicitamente por alguns modelos de volatilidade, como em Heston (1993).

    As superfícies de volatilidade combinam smiles com a estrutura a termo de volatilidade para tabular valores apropriados para precificar uma opção com qualquer preço de exercício e prazo de expiração.

    Da mesma forma como a curva de juros em um dado momento é uma descrição concisa dos preços dos títulos negociados naquele mercado, assim, para um ativo subjacente em particular em determinado momento, a superfície de volatilidade implícita fornece uma descrição resumida de seu mercado de opções. Considerando que os rendimentos dos títulos são diferenciados pelo seu tempo até o vencimento, as opções são diferenciadas por seu tempo até a expiração e o strike, logo requerem uma superfície ao invés de uma curva.

    A figura 1 demonstra uma superfície de volatilidade implícita do SPX em 15/09/2005, conforme apresentado em Gatheral (2011).

    Superfície de volatilidade implícita.

    Figura 1: Superfície de volatilidade implícita.

    Arbitragem estática

    Antes de definir o que é arbitragem estática que pode estar presente em uma superfície de volatilidade (ou na superfície de preço de opções), vamos partir para a intuição por trás desta definição.

    O princípio de ausência de arbitragem é dominante na teoria financeira. Este princípio nos informa que não deve existir lucro sem que se incorra em algum tipo de risco, o lucro sempre é a remuneração do investidor que aceitou carregar alguma forma de risco durante o investimento. Portanto, não devem existir perfis de lucro acima da taxa livre de risco (payoffs positivos) com probabilidade de 100%.

    Primeiro consideramos uma trava de alta com opções do tipo call. Excluindo-se os custos de transação, esta operação sempre oferece um retorno positivo ou zero, conforme a figura 2. Por mais que esta estratégia esteja montada fora do dinheiro, sempre existe uma possibilidade de ela ter lucro, \(S_T>K\) e portanto seu preço deve ser sempre maior que zero.

    Perfil de lucro de uma trava de alta.

    Figura 2: Perfil de lucro de uma trava de alta.

    É claro que quanto mais ITM estejam as opções, maior seu preço e quanto mais fora do dinheiro menor será seu valor até o limite inferior zero. Se levarmos a diferença entre os strikes, \(dK\) a zero temos que:

    \[\frac{\partial C}{\partial K}\leq 0\]

    Este é o limite de arbitragem para travas de alta ou, mais conhecido pelo termo em inglês call spread no-arbitrage e impõe que os preços das calls devem ser uma função descrescente no strike. De forma equivalente e através da paridade compra-venda este limite de arbitragem para as puts é:

    \[\frac{\partial P}{\partial K}\geq 0\]

    Arbitragem de borboleta

    Também deve ser imposta uma restrição na segunda derivada do preço das opções em relação ao strike, e esta é conhecida como limite de arbitragem para borboletas. Vejamos porquê.

    Considere uma estratégia do tipo borboleta, onde se compra uma quantia de calls no strike \(K-dK\), vende-se duas vezes esta quantia em \(K\) e compra-se novamente um lote em \(K+dK\), o perfil de lucro desta operação no vencimento está representado na figura 3.

    Borboleta realizada com calls.

    Figura 3: Borboleta realizada com calls.

    Seguindo a mesma linha de raciocínio anterior, como o payoff da borboleta é sempre não negativo também deve ser o seu valor para qualquer período anterior a expiração. Se denotarmos \(\pi_B\) o valor da borboleta, então \(\pi_B\geq0\).

    Agora imagine que escalamos a estratégia de forma que um lote de compras (na venda são dois lotes) seja de tamanho \(1/dK^2\), o valor para a montagem desta operação deve ser, portanto:

    \[ \pi_B=\frac{C(K-dK)-2C(K)+C(K+dK)}{dK^2} \]

    E se levarmos ao limite em que \(dK\rightarrow 0\), a equação acima torna-se justamente a segunda derivada do preço da call no strike \(K\).

    \[ \begin{aligned} \frac{\partial^2 C(K)}{\partial K^2}=& \pi_B\\ \geq & 0 \end{aligned} \]

    Ou seja, os preços das calls são uma função convexa nos strikes. O mesmo raciocínio pode ser feito para uma borboleta com puts e o resultado será equivalente, o preço das puts também deve ser uma função convexa nos strikes.

    Arbitragem de calendário

    Passamos agora a analisar os limites de arbitragem na estrutura a termo da superfície de volatilidade. A arbitragem de calendário normalmente é expressa em termos de monotonicidade dos preços em relação ao período para expiração. Ou seja, quanto maior o prazo de maturidade de uma opção para um mesmo preço de exercício, maior deve ser seu valor.

    É fácil de entender este limite com base nas probabilidades de exercício. Como sabemos, em um processo estocástico do tipo MBG a variância do processo cresce conforme a raiz do tempo, \(\sqrt{\tau}\). Quanto maior a variância do ativo subjacente, maior a probabilidade deste alcançar um determinado preço, mais elevado ou não. Assim, seja uma call ou put OTM quanto mais distante estiver seu prazo de maturidade, maior a probabilidade de exercício e portanto, maior seu valor.

    Dado que a relação de volatilidade total implícita e preço de uma opção também é direta e positiva, conforme demonstrado na parte 1 deste artigo, segue que a volatilidade total deve ser não decrescente no tempo para expiração.

    Esta relação pode ser expressa através da seguinte equação para uma call precificada através de B&S:

    \[ \frac{\partial C_{BS}(k, \theta(\tau))}{\partial \tau}=\partial_\theta C_{BS}\cdot\partial_\tau \theta \geq 0 \]

    onde \(\partial_\theta C_{BS}\) é a derivada parcial do preço da call em relação a volatilidade total implícita, que já demonstramos ser positiva e \(\partial_\tau \theta\) é a derivada parcial da volatilidade total implícita em relação ao tempo para maturidade que, portanto, deve ser maior ou igual a zero para obedecer a restrição imposta ao preço da call.

    Limites de inclinação

    Se mantivermos a volatilidade implícita constante para todos os strikes, os preços das calls no modelo B&S devem ser decrescentes. Por outro lado, para um strike fixo, o preço de uma call se eleva à medida que a volatilidade implícita aumenta. Suponha por um momento que a volatilidade implícita varia com o strike como é o caso nos smiles. À medida que o strike aumenta, se a volatilidade implícita aumentar muito rapidamente, seu efeito sobre o preço da call pode mais que compensar o declínio no preço devido a elevação do preço de exercício e, assim, levar a um aumento líquido no preço da opção. Isso violaria o requisito de que \(\partial C /\partial K \leq 0\) e, portanto, leva a um limite superior na taxa em que a volatilidade implícita pode aumentar com o strike.

    Novamente, o mesmo raciocínio pode ser imposto para o lado das puts. A volatilidade implícita não pode se elevar tão rapidamente quando os strikes se reduzem de forma que uma put de strike menor tenha valor mais elevado que outra que esteja mais próxima do dinheiro.

    Finalmente, um sumário dos limites impostos a uma superfície de preços de opções (calls no caso apresentado), que implicam em limites para a superfície de volatilidade é apresentado abaixo1:

    1. \(\partial_\tau C \geq 0\)
    2. \(\lim\limits_{K\rightarrow\infty}C(K, \tau)=0\)
    3. \(\lim\limits_{K\rightarrow-\infty}C(K, \tau)+K=a, \quad a \in \mathbb R\)
    4. \(C(K, \tau)\) é convexa em \(K\)
    5. \(C(K, \tau)\) é não-negativa

    Distribuição implícita

    O modelo B&S é baseado na suposição que o ativo subjacente segue uma distribuição log-normal em seus preços. Caso esta suposição fosse de fato realizada no mercado, o smile de volatilidade seria uma reta completamente horizontal, não haveria variação na volatilidade implícita conforme o preço de exercício. Entretanto, esta não é a realidade dos smiles e podemos fazer a pergunta inversa portanto, qual a distribuição neutra ao risco que está implícita no smile de volatilidade?

    Certamente não é uma log-normal. Na verdade, a densidade da distribuição que está implícita em um smile nada mais é que a convexidade deste smile, ou seja, sua segunda derivada em relação ao strike. Esta distribuição implícita também é por vezes chamada de RND (risk neutral density) e é muito útil para fazer a precificação de outras opções que não são observadas no smile ou extrair probabilidades de ocorrência de eventos precificadas pelo mercado.

    Pode-se obter este resultado a partir da definição do valor de uma call e é conhecido como a fórmula de Breeden-Litzenberger2. O valor de uma call é o valor esperado do payoff terminal desta call ponderado pela densidade neutra ao risco do subjacente. Ou seja:

    \[ C(S, t)=e^{-r\tau}\int\limits_{0}^\infty p(S,t,S_T,T)\max\{S_T-K, 0\}dS_T \]

    onde \(p(\cdot)\) é a densidade neutra ao risco e estamos supondo uma taxa de juros livre de risco constante durante o período de vida da opção. Como o payoff da call é não linear, sendo zero para qualquer valor de \(S_T \leq K\) e igual a \(S_T-K\) quando \(S_T > K\), podemos escrever esta equação como:

    \[ C(S, t)=e^{-r\tau}\int\limits_{K}^\infty p(S,t,S_T,T)(S_T-K)dS_T \]

    que pode ser rearranjada, com alguma simplificação na notação, da seguinte forma.

    \[ \begin{aligned} \frac{\partial C}{\partial K}=& -e^{-r\tau}\int\limits_{K}^\infty p(S_T)dS_T\\ e^{r\tau}\frac{\partial C}{\partial K}=& \int\limits_{-\infty}^K p(S_T)dS_T\\ e^{r\tau}\frac{\partial^2 C}{\partial K^2}=& \ p(K)\\ \frac{\partial^2 C_B}{\partial K^2}=& \ p(K)\\ \end{aligned} \]

    Onde usou-se a notação \(C_B\) para denotar a formulação de Black para o preço de uma call. Ou seja, a segunda derivada em relação ao strike do preço não descontado de uma call é a distribuição neutra ao risco do ativo subjacente, e é válida para todos preços de exercício.

    Portanto, se desejarmos saber qual a distribuição de probabilidades de preços do ativo subjacente em uma data futura que possua vencimento de opções, basta encontrarmos a convexidade do smile dos preços forward daquele vencimento3.

    Conclusão

    Este foi um artigo denso, porém com vários conceitos importantes para a compreensão do comportamento da superfície de volatilidade. A estrutura a termo também é existente na volatilidade implícita e está limitada pela ausência de arbitragem do tipo calendário. O smile de volatilidade, que é uma fatia da superfície com prazo de expiração constante, possui suas próprias limitações de forma, com a ausência de arbitragem do tipo borboleta e limitações quanto a inclinação.

    Por fim, foi demonstrado como a convexidade do smile de preços fornece a distribuição implícita para os preços do ativo subjacente para a data de expiração das opções.

    Referências

    Aurell, Alexander. 2014. “The Svi Implied Volatility Model and Its Calibration.” Master’s thesis, Kungliga Tekniska Högskolan.

    Breeden, Douglas T, and Robert H Litzenberger. 1978. “Prices of State-Contingent Claims Implicit in Option Prices.” Journal of Business. JSTOR, 621–51.

    Gatheral, Jim. 2011. The Volatility Surface: A Practitioner’s Guide. Vol. 357. John Wiley & Sons.

    Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies 6 (2). Oxford University Press: 327–43.

  • Retirado de
    Aurell (2014), p. 25.[↩][2]

  • Autores da formulação em seu artigo,
    Breeden and Litzenberger (1978)[↩][3]

  • Simples em teoria, muito mais complicado na prática, com diversos problemas para a extrapolação do smile para strikes extremos.

    Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments
    Smile de Volatilidade

    Smile de Volatilidade

    <br /> Smile de Volatilidade – Superfície de Volatilidade<br />

    A volatilidade instantânea, \(\sigma\), do ativo subjacente é a única variável no modelo B&S que não pode ser diretamente observada. De fato, a volatilidade (ou equivalentemente a variância) de um ativo é dita uma variável latente. Sabemos que ela existe e possui algum valor no processo gerador, o processo pelo qual os preços são formados, porém não conseguimos observá-la diretamente, apenas estimá-la. Uma das formas de estimação de volatilidade pode ser a partir de dados históricos, mas várias outras formas existem, entre elas processos GARCH, volatilidade realizada, volatilidade estocástica, etc.

    Uma vez que a volatilidade não pode ser diretamente observada, a prática comum no mercado é fazer o caminho inverso. Considerar os preços de mercado para as opções como dado, e a partir do modelo B&S inverter a equação de preço da Call ou Put para encontrar a volatilidade deste modelo que é compatível com os preços de mercado. A esta volatilidade encontrada damos o nome de volatilidade implícita.

    Portanto, o smile de volatilidade que tratamos neste post é na verdade um gráfico entre a volatilidade implícita, retirada de opções Européias (baunilhas, do inglês vanilla options) a partir do modelo B&S, contra os strikes destas opções.

    Reparametrizando B&S e definição de moneyness

    Nem sempre é interessante plotar o smile contra os strikes propriamente ditos, uma forma de avaliar o quanto uma opção está “dentro, fora ou no dinheiro” pode ser a grega Delta ou então o chamado moneyness (por favor, se alguém tiver uma boa tradução para este termo, deixe nos comentários). Tradicionalmente a medida de moneyness é a relação \(K/S\), ou seja o strike contra o preço corrente do subjacente. Porém existem outras definições mais interessantes para se trabalhar, entretanto, antes devemos fazer uso de algumas definições e vamos reparametrizar as expressões \(d1\) e \(d2\) do modelo B&S.

    Lembrando que em precificação de opções estamos no mundo neutro ao risco, vamos definir o valor forward, \(F\) do subjacente como o valor corrente composto pela taxa livre de risco até a maturidade da opção, ou seja:

    \[F=e^{r\tau}S\]

    A volatilidade (implícita) total pode ser definida como a volatiliade reescalada pela raiz do tempo, que nos dá uma informação da volatiliade esperada para o subjacente do período corrente até a maturidade. Da mesma forma, a variância total. Denotanto a volatilidade total por \(\theta\) e a variância total por \(w\), temos:

    \[\theta=\sigma_{imp}\cdot \sqrt{\tau}\]

    e

    \[w=\sigma_{imp}^2\cdot\tau\]

    Vamos também definir a medida forward log-moneyness e denotá-la por \(k\). Esta será a medida de moneyness que iremos utilizar ao longo deste e de outros artigos, portanto iremos utilizar este termo para designar o forward log-moneyness a não ser que expresso de forma contrária no texto.

    \[k=\ln\left(\frac{K}{S}\right)-r\tau=\ln\left(\frac{K}{F}\right)\]

    Logo, o strike está relacionado ao moneyness de forma que: \(K=Fe^k\).

    Podemos agora reparametrizar as expressões \(d1\) e \(d2\) do modelo B&S de forma que serão mais facilmente trabalhadas em modelos de volatilidade. Lembrando destas expressões que já foram apresentadas em artigo anterior:

    \[\begin{aligned} &d_{1}={\frac {\ln(S/K)+(r+\sigma ^{2}/2)(\tau)}{\sigma {\sqrt {\tau}}}}\\ &d_{2}={\frac {\ln(S/K)+(r-\sigma ^{2}/2)(\tau)}{\sigma {\sqrt {\tau}}}}=d_1-\sigma\sqrt{\tau} \end{aligned}\]

    Substituindo as expressões para forward log-moneyness e volatilidade total nas definições acima temos as novas parametrizações para \(d1\) e \(d2\):

    \[\begin{aligned} &d_{1}={-\frac{k}{\theta}+\frac{\theta}{2}}\\ &d_{2}={-\frac{k}{\theta}-\frac{\theta}{2}}=d_1-\theta \end{aligned}\]

    Retomando o valor da opção do tipo Call no modelo B&S, podemos reescrever sua fórmula de apreçamento da seguinte forma:

    \[\begin{aligned} C(K, \tau)=&SN(d1)-Ke^{-r\tau}N(d2)\\ e^{r\tau}C(K, \tau)=&FN(d1)-KN(d2)\\ =&F\left[N(d1)-e^kN(d2)\right] \end{aligned}\]

    Esta equação é conhecida como a forma de Black de precificação (Black Call price formula), que relaciona os valores forward da opção (também conhecido como valor não descontado), do subjacente e do strike. Esta formulação é particularmente útil quando formos extrair a distribuição neutra ao risco do subjacente que está implícita nos preços de mercado das opções.

    Características de smiles de volatilidade

    Caso o modelo de Black, Schole e Merton estivesse em acordo com a realidade, e os ativos tivessem seus preços formados a partir de um verdadeiro MBG, a volatilidade implícita seria uma constante. O gráfico do smile de volatilidade seria uma reta horizontal, com a mesma volatilidade para qualquer nível de moneyness e se considerarmos a superfície toda (que leva em conta os diversos tempos para expiração) esta seria paralela ao domínio \((k, \tau)\). Não estaríamos escrevendo (e você lendo) este artigo se este fosse o caso…

    O fato é que o modelo B&S é um modelo muito restritivo, com inúmeras suposições que não se verificam no mundo real e que por conseguinte, tornam os resultados do modelo pouco acurados. Entretanto este é um modelo muito conhecido, de fácil assimilação por parte dos agentes de mercado e que virou a língua franca nos mercados de derivativos. Se todos os traders conversarem em termos do modelo B&S, todos se entenderão, mesmo que internamente cada um possua seu próprio modelo de apreçamento.

    Entre as características tipicamente observadas em smiles (e superfícies) de volatilidades pode-se citar:

    • As volatilidades implícitas variam conforme o strike e prazo de expiração
    • Smiles apresentam skew. Maior inclinação em uma das asas, representando uma maior probabilidade daqueles strikes acontecerem
    • Smiles de equity tipicamente são negativos
    • Mercados diferentes apresentam padrões de smile diferentes

    Mercados cambiais

    Opções sobre moedas possuem tipicamente um smile de volatilidade conforme mostrado na figura 1 abaixo. A volatilidade implícita é relativamente baixa para opções ATM. Esta torna-se progressivamente maior quando a opção se move para dentro do dinheiro ou para fora.

    Smile de volatilidade típico de um mercado cambial.

    Figura 1: Smile de volatilidade típico de um mercado cambial.

    Caso a distribuição dos preços do ativo subjacente, neste caso uma taxa de câmbio fosse perfeitamente log-normal como no modelo B&S, o smile não teria esta curvatura. Desta forma podemos afirmar que o mercado, ao precificar as opções, acredita que a distribuição deste ativo possui caudas com maior densidade que supõe a log-normal, existem maiores probabilidades de retornos muito baixos ou muito altos.

    Mercados de equities

    Nos mercados de equities, ações, índices de ações e ETFs, por exemplo, o smile apresenta uma característica de assimetria (skew, em inglês) negativa. A asa esquerda (parte onde as puts estão fora do dinheiro) apresenta valores de volatilidade implícita muito maiores que suas contrapartes no lado das calls. Este comportamento reflete a percepção de mercado de uma maior probabilidade de grandes perdas nas ações que altos ganhos, gerando portanto, uma distribuição de preços assimétrica. Como existe uma maior probabilidade de perdas extremas, o seguro para estas, ou seja, uma put é relativamente mais cara que uma call.

    Smile de volatilidade típico de uma ação ou índice de ações.

    Figura 2: Smile de volatilidade típico de uma ação ou índice de ações.

    Smile como forma de precificação

    Analisando a equação de B&S com a parametrização para \(d1\) e \(d2\) dada no início deste artigo é possível verificar que existe uma relação direta entre volatilidade implícita e preço de uma opção, seja esta uma call ou put.

    Como \(d1\) é estritamente crescente em \(\theta\) e \(d2\) é estritamente decrescente e ao mesmo tempo o preço de uma opção é crescente em d1 e decrescente em d2, logo, temos uma relação direta entre o preço de uma opção e sua volatilidade implícita para uma dada maturidade. Em outras palavras, em um smile, tudo o mais constante, quanto maior a volatilidade implícita maior o preço da opção naquele strike.

    Outra forma de verificar esta relação é perceber que a grega Vega, que é calculada da mesma forma para calls e puts, é sempre positiva. Ou seja, um aumento no valor da volatiliade sempre leva a elevações no preço de uma opção.

    Desta forma é normal entre os praticantes de mercado fazer a precificação de opções em termos de “pontos de volatilidade” e não em valores monetários propriamente ditos. Isto porque o modelo B&S, apesar de não ser o modelo correto (nenhum é) para a precificação de opções, é conhecido e de fácil entendimento para todos. Então todos os praticantes podem fazer suas cotações em termos de volatilidades implícitas, que são extraídas de opções baunilhas com o modelo B&S, e somente na hora de fechar um negócio e liquidar o pagamento, o preço efetivo a ser pago é acordado entre as partes.

    Conclusão

    O modelo de Black-Scholes-Merton, pode ser considerado a pedra fundamental para a precifição de opções. Entretanto, este modelo apresenta uma séries de limitações que fazem com que os praticantes de mercado utilizem outras técnicas neste mercado. Uma destas é o uso do smile de volatilidade e sua interpretação como forma de precificar opções e extrair informações implícitas nos preços.

    A assimetria do smile e suas asas informam que as distribuições de probabilidades para o ativo subjacente não são exatamente log-normais, e podem apresentar discrepâncias significativas, especialmente nas caudas da distribuição que muito interessam a gestão de risco, por exemplo.

    Posted by Rafael F. Bressan in Derivativos & Riscos, 3 comments