Arthur Vier

Acadêmico de graduação em Ciências Econômicas da UDESC/Esag. Membro do Clube de Finanças Esag e analista do núcleo de pesquisa em riscos e derivativos.
Acadêmico de graduação em Ciências Econômicas da UDESC/Esag. Membro do Clube de Finanças Esag e analista do núcleo de pesquisa em riscos e derivativos.
WallStreetBets e a dinâmica do Short Squeeze

WallStreetBets e a dinâmica do Short Squeeze

Ao final de janeiro de 2021, os noticiários e redes sociais passaram a ficar tomadas de comentários acerca do aumento exponencial no preço de várias ações no mercado americano, com destaque para a GameStop, cujo ticker na New York Stock Exchange é GME.

O motivo?  Um Short Squeeze realizado por usuários de um grupo do Reddit chamado WallStreetBets, um grande grupo de investidores pessoa física, que no intuito de “dar o troco” em fundos de investimento – que supostamente entram short em ativos no intuito de ganhar dinheiro sobre investidores pessoa física – realizaram transações com ações e opções gerando um efeito bola de neve que fez com que os preços subissem a patamares estratosféricos.

Mas como é possível realizar tais procedimentos? E por que essa subida foi tão abrupta? Essas e muitas outras questões acerca do Short Squeeze e suas dinâmicas subjacentes serão respondidas neste artigo.

Por que a GameStop?

A primeira pergunta é simples, mas é a mais importante para responder sobre a dimensão que teve o caso.

A GameStop é uma empresa varejista de video-games e entretenimento fundada em 1984. Ela teve seu IPO (initial public offering) em 2002, e desde então sua maior fonte de receita tem sido em eletrônicos e jogos físicos, operando mais de 3500 lojas nos Estados Unidos, Canadá, Austrália, Nova Zelândia e Europa.

A empresa começou a ter dificuldades com a mudança de preferência dos consumidores, que passaram a perder o interesse em jogos físicos, tendo em vista que serviços online como Xbox Live, Playstation Network, Nintendo eShop e Steam, tiveram muita adesão no mercado e ofereciam jogos digitais cuja compra e download podia ser feita no conforto de casa.

Em 2017 a empresa reportou uma queda de 16,4% nas vendas durante os feriados de final de ano. Os anos seguintes se sucederam com o fechamento de lojas, queda no preço das ações, piores resultados e pouca adesão de seu sistema de vendas online, até 2020, quando a pandemia do Covid-19 forçou o fechamento de suas 3500 lojas por aproximadamente três meses.

As vendas digitais cresceram muito, mas a empresa passou a ser criticada pela resposta à pandemia, com empregados e usuários de redes sociais acusando a companhia de colocar os negócios à frente da segurança de seus funcionários e consumidores.

Durante o período de seu declínio, fundos de investimento – assim como investidores pessoa física, mas de maneira menos expressiva – montaram posições vendidas (short) na ação chegando a um ponto onde havia 150% de short interest. A posição short racionalizava-se na ideia de um declínio no valor da ação tendo em vista piores resultados e participação da empresa no mercado. Essa taxa de mais de 100% permitiu o movimento explosivo do short squeeze e logo explicaremos o porquê.

O que é um Short Squeeze?

Um Short Squeeze ocorre quando o preço de uma ação sobe de maneira rápida e acentuada, o que faz com que investidores que apostam na queda do ativo e estejam com posições short em aberto comprem o ativo para evitar perdas. Essas compras aumentam a pressão de compra no ativo e mais uma vez levam a uma subida no preço.

A ideia vem de que os investidores são forçados (ou apertados, na tradução literal) a zerar a sua posição vendida no ativo, geralmente em uma posição na qual já estão perdendo dinheiro e querem limitar as perdas.

Para quem tem familiaridade com o mercado financeiro a ideia de que uma posição short é muito mais arriscada que uma posição long (comprada) já é intuitiva, mas caso o leitor não tenha tanta familiaridade, sua análise é simples: quando o investidor compra uma ação, ele está assumindo um risco com seu capital; em uma posição comprada, o pior risco para este investidor é perder todo seu dinheiro em alguma situação extrema (falência, desastres naturais) que façam o preço da ação cair a zero; já em uma posição vendida o investidor está alugando o ativo para comprá-lo novamente em um período posterior, assumindo o compromisso dessa compra. Num aumento substancial no preço da ação, o prejuízo da posição vendida é ilimitado (pode ser maior que o valor total do capital investido), se uma ação sobe mais de 100% a posição já está perdendo mais capital do que o investidor possui. Em fatores gerais, enquanto um investidor com uma posição comprada comum pode apenas perder todo seu dinheiro, uma posição vendida pode causar, além da perda total, uma dívida adicional sobre o capital investido.

Tendo em vista essa informação, cada vez que o ativo sobe, torna-se crucial para o investidor encerrar sua posição vendida, o qual irá entrar no mercado com uma posição compradora, que força novamente o preço para cima, o que leva o investidor seguinte a encerrar a posição, formando um efeito bola de neve.

Como é possível realizar tais procedimentos?

A ideia mais simples e intuitiva de realizar um short squeeze seria comprar a posição à vista, não? Na verdade, não. No Brasil, dias depois de noticiados os acontecimentos com a GameStop, investidores se organizaram em um grupo de Telegram, juntando mais de 40 mil membros, com o objetivo de recriar o movimento no papel IRBR3, ou IRB Brasil RE, uma resseguradora brasileira. Percebeu-se no mercado no dia seguinte inúmeras compras do papel à vista, fazendo ele fechar com um aumento de 18%, realmente significativo, mas que não se manteve.

Para realizar um movimento desses com o próprio ativo, seria necessário um volume enorme de transações ou a escolha de uma ação pouco negociada, cujo preço é mais suscetível a menores volumes. As alternativas envolvem a negociação de opções e para entendermos a dinâmica que elas oferecem recomendamos o artigo de Introdução ao Mercado de Opções. Caso o leitor já tenha familiaridade e entenda o funcionamento das opções de compra e venda, assim como já conheça as definições de ITM (In The Money), ATM (At The Money) e OTM (Out of The Money), iremos nos direcionar para a explicação de novos conceitos necessários para a criação desses movimentos.

As Letras Gregas

As Gregas são medidas de diferentes dimensões do risco em uma posição em opções, sendo que o objetivo do trader é gerenciar as gregas de modo que todos os riscos sejam aceitáveis. Neste artigo não entraremos a fundo em todas as gregas, apenas no Delta e Gama, as quais são de extrema importância para o caso da GameStop.

Delta

O delta de uma opção (Δ) representa a primeira derivada da função de apreçamento da opção em relação ao preço do ativo subjacente, ou seja, ela representa a taxa de mudança no preço da opção, quando há mudança no preço do ativo. Um delta de 0,4 demonstra que quando o preço da ação subjacente muda em uma pequena quantia, o preço da opção muda em 40% dessa quantia. Essa grega também é interpretada como a inclinação da curva que relaciona o preço da opção com o preço do ativo subjacente (ou seja, a derivada).

Figura 1: Cálculo do Delta

Uma maneira de fazer hedge (proteção) de uma posição de opções de compra emitidas (posição vendida) é comprando Δ vezes o número de ações referentes a essa posição em opções. Por exemplo, se o investidor vendeu uma posição referente a 4000 ações cuja opção possui delta 0,4, sua posição fica protegida quando ele compra 0,4*4000 = 1600 ações. Nesse caso, para qualquer movimento, um ganho na posição vendida vai compensar a perda na posição comprada e vice-versa. Ao montar essa proteção o investidor possui o que chamamos de portfólio Delta Neutro.

Até aqui o delta parece simples assim como sua proteção, apesar disso, ele não é uma variável constante, o que torna a posição do trader neutra apenas por um período relativamente curto, criando a necessidade de rebalanceamento do portfólio.

 Gama

O gama (Γ) de um portfólio é interpretado como a segunda derivada da função de apreçamento da opção em relação ao preço do ativo subjacente, ou seja, ela é a taxa de mudança do delta do portfólio com relação ao preço do ativo subjacente.

Se o gama é pequeno, o delta muda lentamente e os ajustes para manter o portfólio delta neutro precisam ser realizados relativamente poucas vezes. Contudo, se o gama é altamente positivo, o delta se torna bastante sensível ao preço do ativo subjacente. Quando o gama é “grande”, o portfólio diminui de valor se não há mudança no preço da ação, mas aumenta de valor se há uma grande mudança positiva ou negativa.

Desse modo, opções no dinheiro (ATM) são as com maior gama, posição na qual o delta está perto da metade de seus valores possíveis (próximo de 0,5 para calls e -0,5 para puts), pode-se observar também que quando uma opção está muito fora do dinheiro seu delta é próximo de zero e muda de maneira lenta com relação ao preço do ativo subjacente. Quando uma opção está muito dentro do dinheiro, seu delta está próximo de 1 (-1 para puts), mas muda de maneira lenta com relação ao preço do ativo.

Outro fator que afeta o gama é o tempo, além de sua relação negativa com a outra grega Teta (mudança no valor do portfólio com relação à passagem do tempo), ao aproximar-se do vencimento da opção, o gama torna-se explosivo, como demonstrado no gráfico abaixo. Essa dinâmica permite que essa grega se torne um importante fator na execução de um short squeeze, na abordagem chamada Gamma Squeeze.

Figura 2: Gama contra strike e tempo

Market Makers

Os Market Makers (MMs), ou Formadores de Mercado, são pessoas jurídicas cadastradas em suas respectivas bolsas de valores que se comprometem a manter ofertas de compra e venda de forma regular e contínua durante a sessão de negociação, mantendo a liquidez de ativos, facilitando os negócios e mitigando movimentos artificiais nos preços.

Em geral, quem realiza essa função são bancos, corretoras e outras instituições financeiras. Essa função entrega ao investidor a garantia de conseguir vender seu ativo quando precise do dinheiro, permitindo que a transação ocorra a um preço justo do ativo, sem adicionar um prêmio pelo risco de liquidez.

Short Squeeze

A partir dos conceitos demonstrados, o leitor torna-se capaz de entender a dinâmica envolvida no short squeeze e todas as suas particularidades.

A utilização de opções para tal procedimento baseia-se na atuação dos market makers. Quando é aberta uma compra ou venda de opções, a chance é muito maior que esteja sendo realizada a operação com um market maker, o qual é responsável pela emissão ou aquisição das opções para manter a liquidez do mercado, do que com um investidor individual. Mas essa operação realizada pelos MMs também tem como objetivo gerar lucro (não necessariamente na posição em si, mas na taxa de juros recebida na montagem dela), então o preço negociado por eles está baseado em uma análise estatística baseada geralmente no modelo de Black-Scholes-Merton, o qual demonstra a posição que deve ser mantida pela instituição para que eles permaneçam com o delta neutro, assim como o gama permite descobrir quanto ela deve hedgear sua posição.

No caso da GameStop, os grandes volumes vendidos no ativo provenientes da visão pessimista, poderiam ser hedgeados na compra de opções OTM baratas, emitidas pelos MMs, representando a primeira pressão compradora no ativo. Outro movimento ocasionado pelos volumes short, é o stop-loss dos investidores, que consiste em comprar o ativo à vista para sair da posição, pressionando novamente o preço para cima.

Os investidores interessados no short squeeze, ao invés de comprarem opções ATM para forçar o gama dos MMs, começaram a comprar opções OTM com vencimento próximo, por serem muito mais baratas e com gama explosivo (Gamma Squeeze). Isso muda a dinâmica do gama nos cálculos dos market makers, os forçando a comprar mais do papel a vista para hedgear sua posição, neutralizando o gama. 

O caso da GameStop, se tornou notícia mundial e foi realmente um ponto fora da curva, no momento que escrevo este artigo o preço da ação é negociado a cerca de 750% de seu valor antes do short squeeze mas a 40% de seu valor no pico do evento, apesar de estar a mais de um mês de seu acontecimento.

Por fim, um ponto importante trazido pela dinâmica de short squeeze é que da mesma forma que sua subida é abrupta e acentuada, sua queda se confirma. Observe que o gama é baseado na inclinação do delta, e quanto mais longe do strike, menor é o ajuste de hedge das posições, além disso, ao passo que as opções expiram ou seus contratos são executados, o market maker não é mais requerido de manter um hedge, tendo em vista que sua posição não existe. Não importa qual a dinâmica da inversão do movimento, os Gamma Squeezes não são eternos e seu movimento negativo pode ser pior que a subida inicial. Nesses cenários, a volatilidade é imensa, o que torna a previsibilidade quase impossível, por isso, se o investidor não tem pleno conhecimento e consciência da posição que está estabelecendo, a melhor escolha é observar e aprender, tendo em vista que muitos cenários são desastrosos para o capital investido nesses ativos.

Referências

HULL, J. C. Options, futures and other derivatives. 9th. ed. [S.l.]: Pearson, 2015.

Investopedia. Disponivel em: <https://www.investopedia.com/>. Acesso em: 04 Fevereiro 2021.

The Motley Fool. Disponivel em: <https://www.fool.com/>. Acesso em: mar. 2021.

GAMESTOP. Wikipedia. Disponivel em: <https://en.wikipedia.org/wiki/GameStop#GameStop’s_successful_years_(2004%E2%80%932016)>. Acesso em: 04 Fevereiro 2021.

HOUSTECKY, P. Option Gamma. Macroption. ISSN https://www.macroption.com/option-gamma/. Acesso em: 06 mar. 2021.

OPTION Gamma Explained: The Ultimate Guide. ProjectOption. Disponivel em: <https://www.projectoption.com/option-gamma-explained/>. Acesso em: 06 mar. 2021.


Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Fluxo de Caixa em Risco

Fluxo de Caixa em Risco

Na trajetória sobre quantificação de riscos analisa-se também ativos não financeiros, para isso aborda-se, neste artigo, o modelo denominado Cash-Flow-at-Risk (CFAR), um modelo que utiliza a mesma metodologia do Value-at-Risk, mas modificado para mensurar os riscos do setor corporativo.

A definição do CFAR se assimila a do VaR sendo aquele a pior perda nos fluxos de caixa em determinados nível de confiança e período. O horizonte de tempo é selecionado, geralmente, para corresponder a um ciclo de planejamento corporativo.

Para distinção entre os riscos financeiros e corporativos há duas categorias de preços de mercado, as exposições a valor (Value-exposures) e exposições a fluxo de caixa (Cash Flow-Exposures). As exposições a valor refletem ativos como portfólios com taxas de juros fixas, moedas estrangeiras ou estoque de matéria prima, para modelá-las e mensurá-las, utiliza-se o VaR.

Exposições a fluxo de caixa incluem pagamentos fixos e posições nas quais o fluxo de caixa é incerto e não pode ser agregado diretamente a um valor presente. Por exemplo, vendas futuras ou gastos com matérias primas, desde que não seja possível prever, seguramente, as quantidades necessárias. A dependência entre os riscos dos preços e dos gastos de uma companhia podem ser modelados, enquanto mapear as dependências entre preços e vendas é mais desafiador.

Modelando a incerteza

Para modelagem de riscos nas empresas deve-se levar em conta o viés de operação, a incerteza dos fluxos de caixa futuros e a dependência entre as mudanças nos preços do mercado e nos lucros, requerendo, para isso, modelos flexí­veis. Como exemplo, uma mudança na taxa de câmbio pode afetar de maneira significante as vendas de uma empresa exportadora.

Nesse contexto, algumas modificações ao modelo de Value-at-Risk devem ser efetuadas. Como fluxos de caixa são incertos, não se pode determinar um valor presente, portanto, ao invés de analisar apenas o valor presente, será feita a análise baseada em todos os fluxos de caixa e ao invés de olhar apenas para a distribuição de riscos ao fim do horizonte de tempo, simula-se todo o trajeto desse fator de risco durante o período analisado.

Para o processo de simulação, será utilizado o Passeio Aleatório. Passeio Aleatório é um processo aleatório e sua escolha se baseia na ideia de que os fatores de risco, assim como os preços, só mudam quando os participantes do mercado obtêm novas informações. Se e quando as novas informações estiverem disponí­veis dependerá do acaso. Para utilizá-lo poderá ser feita a combinação do processo estocástico (Passeio Aleatório) com uma tendência (componente determinístico).

Ao realizar as simulações é necessário separar dois diferentes pontos de vista. Primeiro, receita e custos da companhia podem ser considerados, isso é a base para o modelo de CFAR. Segundo, o estabelecimento de pedidos e despesas pode ser simulado nas planilhas de balanço, representando o modelo de Earnings-at-Risk.

Como exemplo, a compra de matérias primas resulta e custos imediatos, mas não necessariamente despesas. A matéria prima só cria despesas ao entrar no processo de produção, portanto, nem todo custo culmina, de uma só vez, em despesas contábeis. Observa-se que a diferença entre modelos de fluxo de caixa (CFAR) e de ganhos (EAR) está nas diferentes inputs, sendo a modelagem matemática idêntica.

Independentemente do modelo escolhido, com ajuda de processos estocásticos pode-se simular quantos cenários de evolução de variáveis necessários. Na realização de aproximadamente 10.000 simulações, pode ser construída uma distribuição com intervalos de confiança bicaudal, na qual o intervalo depende da escolha da probabilidade pelo analista.

Mensuração do CFAR

O primeiro passo na mensuração de risco por meio do CFAR é a criação de um Mapa de Exposição, construído de maneira diferente por cada companhia baseado nos riscos enfrentados em seus setores. Nesse mapa, são identificadas todas as dependências entre volume de vendas e preços, seu objetivo é descrever como receita e despesas da companhia mudam de acordo com variações nos preços enfrentados.

A título de exemplo, pode-se analisar fluxos de caixa contratuais, tal como um contrato de venda de bens em moeda estrangeira, como o dólar. Esse contrato pode ser mapeado como uma posição comprada em dólar, com uma exposição econômica (ou exposição de ganhos) igual ao valor nocional do contrato.

O passo seguinte consiste em descrever a distribuição de risco das variáveis chave para a empresa, como preço de commodities, taxas de juros e taxas de câmbio. No exemplo utilizado anteriormente, seria modelada a evolução da taxa de câmbio BRL/USD, a qual pode ser feita por meio de Simulações de Monte Carlo.

Finalmente, as variáveis financeiras modeladas precisam ser atribuí­das às respectivas exposições econômicas, tornando possível a simulação do fluxo de caixa completo. Esta culmina em uma distribuição de ganhos que pode ser analisada de maneira idêntica ao VaR.

Modelando a exposição econômica

Neste tópico será apresentado apenas um modo de analisar os efeitos de variações no mercado em que a empresa está incluída com o intuito de apresentar a noção de modelagem. O gestor deve ter em vista que diferentes fatores podem ser levados em conta, atribuindo maior ou menor complexidade ao modelo, sua elaboração depende dos setores e indicadores aos quais a empresa está exposta, sendo necessária a adequação para cada realidade.

Seguindo o exemplo do exportador deve-se perguntar: como a taxa de câmbio afeta as receitas? Se a companhia compete com firmas nacionais, a apreciação do real afetará todas as exportadoras igualmente e elas podem ser capazes de aumentar os preços em dólar para cobrir seus custos no caso de a demanda pelo produto ser inelástica. Entretanto, se a companhia compete com exportadores estrangeiros, há possibilidade dela não ser capaz de aumentar os preços, culminando em perdas potencialmente grandes. Esses são casos de baixa e alta exposição ao câmbio.

Para generalizar a modelagem, pode-se escrever as receitas como função do preço do produto em moeda estrangeira (P), da quantidade vendida (Q) e da taxa de câmbio (S) expressa em reais. Assume-se que o preço P é estabelecido para manter Q e a elasticidade de P* em relação a S é η (taxa de mudança em P* dado uma mudança em S). Define-se a Elasticidade η como:

Se as quantidades não forem alteradas, pode-se escrever a receita em reais, ao isolar e , e substituí­-los, como:

Considerando que o exportador não tenha poder sobre o mercado, o preço em moeda estrangeira estabelecido pela companhia não pode ser afetado pela taxa de câmbio implicando que η=0. Nesse caso as receitas vão cair na mesma medida que a moeda deprecia em S.

No caso de o preço ser estabelecido em reais, qualquer depreciação do dólar pode ser balanceada por um aumento no preço P*. No caso de uma compensação perfeita η=-1 então os termos se cancelam e as receitas em dólar não são afetadas.

Por fim, num caso intermediário, o exportador pode ser capaz de compensar apenas parcialmente a queda na taxa de câmbio. Por exemplo, se η=-0,5, há necessidade de adequar as simulações de Monte Carlo utilizadas para derivar a distribuição de fluxos de caixa fazendo com que leve em conta o efeito da competitividade.

CFAR Aplicado

Analisando uma fábrica de ferramentas brasileira, que produz martelos e chaves inglesas, que são vendidos em caixas de 100 unidades. Uma caixa de martelos utiliza 50 kg de madeira e 100 kg de aço, enquanto uma caixa de chaves inglesas utiliza 10 kg de alumínio e 25 kg de cobre. O preço de venda de uma caixa de martelos é de US$ 110,00 e uma de chaves inglesas R$ 230,00.

Todas as matérias primas são negociadas em dólar, assim como as mercadorias prontas que são exportadas, além disso, a forte competição do setor não permite que mudanças no preço das matérias primas ou apreciação do câmbio sejam repassadas para os consumidores por meio de aumento de preços.

No dia 28/05/2020, o departamento de vendas da empresa planeja vender mensalmente 1000 caixas de martelos e 500 caixas de chaves inglesas, pelos próximos 12 meses, com variação de até 10%. Portanto, as vendas mensais de martelos serão entre 900 e 1100 caixas, assumindo um desvio padrão de 100, e as vendas de chaves inglesas entre 450 e 550, com desvio padrão de 50.

Primeiramente, monta-se um mapa de exposição, no qual todas as dependências entre volume de vendas e preços são sistematicamente identificadas. Para a companhia analisada, o mapa de exposição é composto por 4 equações e por simplificação assume-se que não há necessidade de estoques. No início de cada mês, as matérias primas são adquiridas e no fim do mês os compradores realizam o pagamento, ou seja, os custos em moeda estrangeira ocorrem no início do mês enquanto as receitas ocorrem no início do mês seguinte. Considerando tempos do transporte, da transferência de fundos e da janela de pagamento, sempre há demora entre o pagamento das matérias primas e venda do produto final, fazendo com que os pagamentos sejam feitos com taxas de câmbio diferentes.

Para ser capaz de lidar com aumentos inesperados no preço das matérias primas, o fluxo de caixa é calculado após subtrair os gastos com estas. Por exemplo, para vendas efetuadas no mês de janeiro, os custos com a matéria prima necessária são subtraí­dos.

Para cada um dos cinco fatores de risco relevantes (preços da madeira, aço, alumínio e cobre e taxa de câmbio BRL/USD) simula-se 10.000 caminhos para os próximos 12 meses (horizonte de planejamento). Estes 10.000 cenários, para os quais são modelados resultados nas mudanças nos fatores de risco com ajuda do mapa de exposição, permitem a simulação de 10.000 fluxos de caixa para o horizonte analisado, permitindo a estimação da distribuição dos fluxos de caixa do ano.

As simulações de Monte Carlo realizadas em R, com evolução baseada no Modelo Browniano Geométrico, foram realizadas utilizando dados da FactSet e agora permitem que sejam simulados os fluxos de caixa de cada um dos meses seguintes ao ponderar pelas quatro equações formadas de acordo com o operacional da empresa:

Agregando as simulações de resultados mensais chega-se à  Distribuição de Resultados Operacionais Anuais, sobre a qual calcula-se um CFAR de R$ 5.080.909,57 com um nível de confiança de 95%, como a distribuição analisada é a distribuição de ganhos, interpreta-se o valor como: o fluxo de caixa com pior desempenho dentre os simulados representa um lucro operacional de R$ 5.080.909,57 reais, com nível de confiança de 95% sobre um período de 12 meses. Já a linha que compreende os 5% melhores resultados da distribuição de ganhos representa um fluxo de caixa de R$ 5.386.815,92.

Por fim, delibera-se que o exemplo utilizado não aborda custos com salários, aluguéis e operação, porém essa abordagem é suscetí­vel à  modelagem das exposições e da operação da empresa, podendo ser aprofundada de acordo com a necessidades do gestor de riscos. O modelo Cash-Flow-at-Risk é o primeiro a abordar de maneira quantificável os riscos enfrentados por instituições não-financeiras e sua utilização tende a aumentar, tornando-se uma maneira eficiente de comparação entre diferentes setores do mercado.

Referências

Jorion, P. 2006. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill.

Perobelli, F. F., & Securato, J. R. 2005. “Modelo para mediação do fluxo de caixa em risco: aplicação a distribuidoras de energia elétrica.”. Revista de Administração de Empresas

Wiedemann, A., Hager, P., & Roehrl, A. 2003. Integrated Risk Management with Cash-Flow-at-Risk/Earnings-at-Risk methods. RiskNET.

Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Expected Shortfall

Expected Shortfall

Expected Shortfall como substituto ao VaR

No artigo anterior foi apresentada a medida de risco conhecida como Value-At-Risk (VaR), nele foram abordados origem, conceito, técnicas de estimação e suas deficiências.

Para lidar com as deficiências que o VaR apresenta, Artzner et al. (1999) introduziram uma nova medida de risco denominada como Expected Shortfall (ES). Durante o decorrer deste artigo, esta medida de risco será apresentada e contextualizada com o VaR além de explorado o porquê do ES ser uma medida que apresenta melhores propriedades.

Alguns pontos a serem levados em conta sobre problemas no mundo real que podem levar o uso do ES ser superior ao do VaR:

  1. Investidores racionais que maximizam seus portfólios podem ser enganados pelo uso do VaR. É provável que construam posições com fragilidades não intencionais e podem resultar em perdas superiores ao VaR.
  2. O VaR não é confiável sob estresse de mercado, sob flutuações extremas de preços de ativos ou sob estrutura de dependência extrema de ativos. Nesses casos, VaR pode subestimar o risco.

Além dos pontos citados acima o ES é uma alternativa ao VaR por ser mais sensível ao formato da cauda de distribuição das perdas e é considerado uma medida de risco coerente por respeitar os quatro axiomas propostos por Artzner.

No artigo sobre Value-at-Risk são abordadas as quatro propriedades que medidas de risco coerentes devem apresentar, sendo elas: Monotonicidade, Homogeneidade, Invariância por Translações e Subaditividade. O VaR satisfaz as três primeiras, contudo não é sempre que ele satisfaz a Subaditividade.

O conceito de subaditividade diz que a soma de dois elementos irá sempre retornar algo menor ou igual à soma dos valores da função de cada elemento e é satisfeita através da fórmula abaixo:

\[ ES(\alpha_1 + \alpha_2, α) = ES(\alpha_1, α) + ES(\alpha_2, α) \]

Esta fórmula demonstra que o ES incorpora os benefícios da diversificação uma vez que o risco total do portfólio é igual ou menor que a soma dos risco dos componentes.

O que é Expected Shortfall?

O Expected Shortfall (ES) é uma medida de risco que produz benefícios adicionais ao Value At Risk (VaR), podendo ser referida como Conditional Value At Risk (CVaR), Average Value At Risk (AVaR) ou Expected Tail Loss (ETL).

Como definição, o Expected Shortfall se conceitua como uma medida de risco quantitativa e responde a seguinte pergunta: qual é a perda média, sabendo que a perda está acima do VaR? E também: se as coisas ficarem ruins, qual é a perda esperada?

Assim como o VaR, o ES apresenta dois parâmetros de cálculo, o horizonte de tempo (T) e o nível de confiança (\(\alpha\)). Sendo representado pela perda esperada durante o período (T), sabendo que a perda está condicionada a ser maior que o \(\alpha\)-ésimo Percentil da distribuição de perdas.

Como exemplo, supondo que o VaR é de 1 milhão de reais e que o nível de confiança (\(\alpha\)) é de 99, horizonte de tempo (T) é 1 dia. Então, o ES é a quantia média perdida em um período de 1 dia, sabendo que a perda será superior a R$ 1 milhão.

A figura abaixo, exemplificada em Yamai and Yoshiba (2005), ilustra os conceitos do próprio ES e também do VaR:

Figura 1: VaR e Expected Shortfall

Técnicas de estimação

Os valores do ES são derivados do cálculo do próprio VaR, as premissas do VaR como a forma de distribuição dos retornos, a periodicidade dos dados, a volatilidade estocástica, o corte utilizado, todos afetarão o valor do ES.

Pode-se definir o ES com um nível de confiança \(\alpha\) para uma distribuição de perdas \(L\) como a esperança das perdas acima do VAR:

\[ ES (L) = E[L | L\geq Var_\alpha(L)] \]

Essa estimação, assim como o VaR, pode ser feita de forma paramétrica ou não-paramétrica.

Método não-paramétrico

A forma histórica, ou não-paramétrica (por não depender de parâmetros e sim de amostras), é calculada a partir do VaR histórico com \(N\) observações, atribuindo um peso \(1/n\) para cada uma das n observações acima do VaR:

\[ ES_\alpha(L) = (\sum_{i=N-n}^NLi)/(n) \]

Métodos Paramétricos

Para modelos paramétricos, supomos uma distribuição a que irá depender de certos parâmetros que serão estimados. Dessa forma podemos definir o ES em termos contínuos como uma integral no intervalo \([1 – α; 1]\):

\[ ES =\frac{1}{1-\alpha}\int_{\alpha}^{1}(\Phi^{-1}(1-u)\sigma + \mu)du \] \[ ES = \frac{1}{1-\alpha}\int_\alpha^1 VaR_u(L)du \] Alguns dos modelos mais comuns para se estimar o ES pelos métodos paramétricos são a distribuição Normal (Gaussiana) e a distribuição t-Student. Algumas variações um pouco mais sofisticados são as distribuições da família johnson e a distribuição t não-central.

Assumindo uma distribuição Normal, podemos resolver a integral substituindo a função quantil da Normal padrão \(\Phi^{-1}\) ajustada para os parâmetros da distribuição \(L\), conforme derivação feita por Smaga (2016) :

\[ ES_\alpha =\sigma \frac{\varphi(\Phi^{-1}(\alpha))}{1-\alpha}-\mu \]

Com \(\varphi\) sendo a função de densidade de probabilidade e \(\Phi^{-1}\) a função quantil da Normal padrão (\(N \sim (0;1)\)).

Como simplificação podemos assumir que: \[ ES_{\alpha} =ƛσ − μ \]

Onde \(ƛ\):

\[ ƛ(α) = \frac{\varphi(\Phi^{-1}(α))}{1 − α} \]

Qual método utilizar?

Questões podem ser levantadas sobre a efetividade de cada método. A primeira vista o histórico pode parecer uma boa escolha devido à disponibilidade de dados no mercado financeiro e o aparente melhor ajustamento aos fatos reais. Enquanto isso pode ser verdadeiro se comparado com a estimação por meio da Normal, a distribuição t (e suas variações) pode se mostrar útil para o caso de termos poucas observações ou se quisermos intuir sobre a cauda da distribuição utilizando todo o conjunto de observações. Outra possibilidade seria utilizar estimadores de máxima verossimilhança para estimar os parâmetros da distribuição utilizada, garantindo uma estimativa mais conservadora nos métodos paramétricos, assim como descrito em Martin and Zhang (2017).

Assim como no VaR, além desses dois métodos podemos usar a simulação de Monte Carlo para gerar as observações e proceder assim como no método histórico.

O que é o comitê de Basileia e como ele vem tratando as medidas de risco?

O Comitê de Supervisão Bancária de Basileia é uma organização constituída por representantes de autoridades de supervisão bancária que promove a discussão sobre o aperfeiçoamento das práticas de supervisão bancária, buscando melhorar as ferramentas de fiscalização internacionalmente, e visa o fortalecimento da solidez dos sistemas financeiros.

Em 1988, o comitê estabeleceu o acordo de Basileia I que teve como objetivo criar exigências mínimas de capital, a qual devem ser respeitadas por bancos comerciais, para precaução contra o risco de crédito.

O Basileia I determinou três regras principais para que houvesse o funcionamento:

– Índice Mínimo de Capital: Determina que o banco deve deixar, pelo menos, 8% de capital em caixa de seus empréstimos.

– Capital Regulatório: Determina que a instituição deva deixar um mínimo de capital próprio em caixa para mitigar riscos.

– Avaliação de Risco: Obriga a todas instituições a avaliarem os riscos de financiamento e empréstimo.

Mesmo com todas as exigências e regras impostas pelo comitê isso não impediu inúmeras falências de instituições financeiras. Em 2004, o comitê lançou um novo acordo denominado Basileia II que teve como objetivo reforçar as medidas propostas pelo primeiro acordo e também deu mais liberdade aos bancos centrais de cada país.

Os três pilares trazidos com o segundo acordo são os seguintes:

1. Critérios para o cálculo dos requerimentos mínimos de capital (riscos de crédito, mercado e operacional);

2. Princípios de supervisão para a revisão de processos internos de avaliação da adequação de capital, de forma a incentivar a aplicação, pelos próprios supervisionados, de melhores práticas de gerenciamento de riscos por meio do seu monitoramento e mitigação.

3. Incentivo à disciplina de mercado por meio de requerimentos de divulgação ampla de informações relacionadas aos riscos assumidos pelas instituições.

Após a crise dos subprimes, observou-se que o acordo anterior era insuficiente, por consequência, surgiu o acordo de Basileia III que é um conjunto de propostas de reforma da regulamentação bancária. O acordo aumentou a regulamentação sobre o sistema financeiro e elevou os limites exigidos para bancos e instituições financeiras.

As principais inovações provenientes deste terceiro acordo foram o aperfeiçoamento dos fatores para ponderação de ativos pelo risco, introdução dos colchões de capital para conservação e contracíclico e novos requerimentos para de liquidez e alavancagem.

Desvantagens do ES

Back-Testing

Realizar o Back-test de uma métrica significa calcular quão bem a medida calculada funcionaria no passado. Supondo uma métrica de cálculo de VaR diário com um nível de confiança \(\alpha\), o back-test consiste em analisar com qual frequência as perdas excedem o VaR diário, cada dia que excede o valor é chamado de exceção. Se as exceções acontecem em aproximadamente (100-\(\alpha\))% das vezes a metodologia usada é relativamente precisa, se ocorrem em mais do que (100-\(\alpha\))% das vezes o VaR está possivelmente subestimado, enquanto se ocorrerem em menos vezes está superestimado.

Essa checagem é uma das razões pelas quais os reguladores têm sido relutantes em trocar o VaR pelo ES na quantificação de risco de mercado, dado pelo fato de ser um procedimento muito mais difícil de realizar para o ES, o que é explicado pela maioria dos métodos de back-testing para ES necessitarem de informações da distribuição de retornos de cada dia, ou pelo menos da distribuição das caudas além do VaR.

Monte Carlo e erros de estimação

Estimativas de Value-at-Risk e Expected Shortfall são afetadas por erros de estimação, os quais representam a variabilidade natural causada por amostras de tamanho limitado. As Simulações de Monte Carlo, que são tipicamente utilizadas em processos os quais não podem ser previstos facilmente devido à intervenção de variáveis aleatórias, variam na estimativa do VaR de acordo com sua aleatoriedade.

Yamai, Yoshiba, and others (2002) observa que em distribuições de perda com caudas longas, o desvio padrão relativo ao ES fica muito maior que aquele relativo ao VaR, enquanto que ao analisar distribuições aproximadamente normais, os desvios padrões relativos são praticamente iguais.

Tal fato é explicado pela probabilidade de perdas grandes e não frequentes em distribuições de caudas longas ser alta, tendo em vista que o ES estimado é afetado por elas. Já o VaR é pouco afetado por essas perdas por negligenciar as perdas além do quantil selecionado.

Ademais, é possível analisar que o aumento no tamanho das amostras é capaz de reduzir o erro da estimação do ES, sendo necessário, para uma distribuição estável de coeficiente de estabilidade igual a 1,5 (quando o coeficiente é 2 a distribuição é normal, sendo que menores valores significam caudas maiores), amostras com centenas de milhares de observações para obter-se o mesmo nível de desvio padrão que aquele relativo ao VaR. Isso faz com que Simulações de Monte Carlo tomem proporções muito grandes, necessitando de poder computacional ainda maior.

Exemplo prático:

A rotina abaixo, elaborada no R, exemplifica a estimação do Expected Shortfall para um portfólio univariado.

library(readr)
library(tidyverse)
library(forcats)
library(ggthemes)
library(PerformanceAnalytics)

Como primeiro passo, instalamos os pacotes acima para importação (readr), manipulação dos dados (tidyverse, forcats), visualização (ggthemes) e para cálculo de indicadores de portfólios (PerformanceAnalytics).

X_GSPC <- read_csv("D:/Programacao/riscoderivativos/static/input/^GSPC.csv")
View(X_GSPC)

sp500 <- as_tibble(X_GSPC)

colnames(sp500) <- c("data", "abertura", "maximo", "minimo", "fechamento","fechamento_adj", "volume") 

Após instalação dos pacotes, deve-se importar os dados do portfólio, nesse caso, univariado. Na rotina referida, foi utilizada uma série do índice S&P500 entre agosto de 2009 e agosto de 2019, com cotação de abertura e fechamento diária.

fechamento <- sp500$fechamento

sp500$variacao2 <- Return.calculate(xts(fechamento,order.by = as.Date(sp500$data))
                                    ,method = "simple")

Returns <- sp500$variacao2

sp500 %>% ggplot(aes(x=variacao2))+ 
  geom_histogram()+ 
  theme_minimal()

Com os dados importados, calcula-se a variação diária do índice através da função “Return.calculate”. A variação também pode ser calculada através do índice em t (\(P_{t}\)) sobre o índice em t-1 (\(P_{t-1}\)), como segue:

\[ \Delta P = \frac{P_{t}}{P_{t-1}}-1 \]

VaR(R = Returns,p = .95,method = "historical")

VaR95 <- VaR(R = Returns,p = .95,method = "historical")

ES(R = Returns,p = .95,method = "historical",)

ES95 <- ES(R = Returns,p = .95,method = "historical",)

Com a variação diária já calculada, tanto o VaR quanto o Expected Shortfall podem ser calculados para intervalos de confiança diferentes. Na função VaR e ES do pacote “PerformanceAnalytics”, o p (nível de confiança) pode ser definido em ambas as funções, assim como o método de estimação, o qual pode ser histórico, gaussiano/normal e modificado (“historical”, “gaussian” e “modified”).

# ES e VaR através de diferentes métodos (paramétricos e não paramétricos)

dfretornos <- data.frame(Returns)

chart.VaRSensitivity(xts(dfretornos,order.by = as.Date(sp500$data)),
                     methods = c("GaussianVaR","HistoricalVaR", "GaussianES", "HistoricalES"), 
                     elementcolor = "darkgrey")

Para elucidar os diferentes métodos de estimação do VaR e ES, o pacote “PerformanceAnalytics” permite gerar o gráfico abaixo, onde no eixo “X” encontra-se o nível de confiança e no eixo “Y” os valores do VaR e ES.


Figura 2: Comparação entre medidas de risco

Referências

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1999. “Coherent Measures of Risk.” Mathematical Finance 9 (3): 203–28.

Martin, R Douglas, and Shengyu Zhang. 2017. “Nonparametric Versus Parametric Expected Shortfall.” Available at SSRN 2747179.

Yamai, Yasuhiro, and Toshinao Yoshiba. 2005. “Value-at-Risk Versus Expected Shortfall: A Practical Perspective.” Journal of Banking & Finance 29 (4): 997–1015.

Yamai, Yasuhiro, Toshinao Yoshiba, and others. 2002. “Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization.” Monetary and Economic Studies 20 (1): 87–121.

Contribuíram como co-autores deste artigo os analistas do núcleo de derivativos e risco Vinícius Custódio, João Pedro Smielevski Gomes e Thiago Ranzolin Barreto.

Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Valor em Risco

Valor em Risco

História do VaR

O termo “Valor em Risco” derivado do inglês Value at Risk (VaR), foi introduzido no vocabulário financeiro apenas no começo dos anos 1990, apesar de suas medidas terem sido originadas muito antes.

Seu início mais provável retrocede à Bolsa de Valores de Nova York (NYSE), por volta de 1922, na qual, inicialmente, uma regra exigia que as firmas mantivessem um capital de 10% de seus ativos composto por posições de capital próprio e contas a receber de clientes. Em 1975, a Comissão de Títulos e Câmbio dos Estados unidos (SEC) estabeleceu novas regras para o capital das firmas, cujo objetivo era proteção contra perdas que poderiam ocorrer durante o período existente na liquidação de posições. Esse sistema dividiu ativos financeiros em várias categorias e subcategorias, para evitar posições muito concentradas em um único ativo.

A volatilidade nos juros americanos levou a SEC a atualizar as regras em 1980, as quais passaram a ser baseadas em análise estatística de dados históricos do mercado. Sua intenção era refletir o .95-quantil da quantidade de dinheiro que uma firma poderia perder em um período de liquidação de um mês. Apesar de não ter sido nomeado na época, essa era uma medida de valor em risco.

Em meados de 1990, muitas firmas careciam de maneiras de gerenciar o risco, foi quando a J.P Morgan desenvolveu um sistema de valor em risco em toda a empresa, modelando inúmeros fatores-chave. Uma matriz de covariância era atualizada trimestralmente com dados históricos e todos os dias as unidades de negociação reportavam a variação de suas posições de acordo com cada fator-chave. Esses dados eram agregados e expressavam o valor do portfólio como um polinômio linear dos fatores de risco, utilizando várias métricas de VaR para analisá-lo.

De 1990 em diante, a pedido do CEO da J.P. Morgan, um dado único de valor em risco deveria ser colocado nos demonstrativos de resultado em um relatório diário para as reuniões de tesouraria às 16:15, representando o risco que seria enfrentado no dia seguinte.

A partir de 1994, a metodologia desenvolvida na J.P Morgan, denominada RiskMetrics foi distribuída sem custo na internet, aumentando o interesse das firmas e investidores no gerenciamento de risco e possibilitando o aprimoramento das métricas de valor em risco.

Como podemos definir o Valor em Risco?

Em sua definição formal, o VaR de um portfólio é uma função com dois parâmetros: o horizonte de tempo (T) e o nível de confiança (X). Ele representa o nível de perda que temos X% de confiança que não vai ser excedido em um período T, podendo ser calculado tanto pela distribuição de probabilidades dos ganhos quanto pela distribuição de probabilidades das perdas.

Como exemplo, ao utilizar T representando três dias e X=90, o Valor em Risco é a perda no décimo percentil da distribuição de ganhos esperados dos próximos três dias. Da mesma forma, é a perda no nonagésimo percentil da distribuição de perdas dos próximos três dias. Genericamente, quando utilizada a distribuição de ganhos, o VaR é igual ao negativo dos ganhos no (100-X)-ésimo percentil da distribuição, como demonstrado na ilustração:

Figura 1: Distribuição de ganhos

Analogamente, quando utilizada a distribuição de perdas, o VaR é igual às perdas no X-ésimo percentil da distribuição:

Figura 2: Distribuição de perdas

Técnicas de estimação do VaR

Definimos o VaR de uma carteira sobre o horizonte T, com nível de confiança X, \(0< X <1\), por meio de:

\[ X=P(\Delta P(T)\leq VaR)=F^{T}(VaR), \]

na qual \(\Delta P(T)\), representa o ganho da posição sobre o horizonte T, e \(F^{T}(\cdot)\) a função de distribuição de ganhos acumulada de \(\Delta P(T)\).

Neste caso, podemos fazer algumas considerações: utilizando a distribuição de ganhos, o (100-X)-quantil de uma posição comprada será tipicamente um número negativo, tendo em vista que há perda no caso de uma queda no preço do ativo, ou seja, \(\Delta P(T)<0\), portanto o VaR é definido como o negativo desse quantil, e será sempre um valor positivo. Este método utiliza a cauda esquerda da distribuição de ganhos para níveis de confiança maiores que 50%.

VaR utilizando o Método Paramétrico

A estimação do VaR utilizando métodos paramétricos, abordada em Morettin (2008), pressupõe que os retornos de um portfólio seguem distribuições de probabilidades, uma dessas técnicas é conhecida como RiskMetrics, a qual supõe que a distribuição condicional dos retornos, dadas as informações passadas, é normal com média zero e variância \(\sigma _{t}^{2}\), ou seja, \[ \mathit{r}_{t}|\mathit{F}_{t-1}\sim \mathit{N}(0,\sigma_{t}^{2}). \] Neste caso, estimamos a volatilidade \(\sigma_{t}^{2}\) por meio do modelo EWMA (Média Móvel Exponencialmente Ponderada), o qual demonstra \[ \sigma^{2}_t=\lambda\sigma^{2}_{t-1}+(1-\lambda)r^{2}_{t-1}, \] onde \(0< \lambda<1\), e utilizando os log-retornos de \(k\) períodos, dados por \[ r_{t}[k]=r_{t+1}+r_{t+2}+…+r_{t+k}. \] A partir disso, \(\sigma_{t}^{2}[k]\), a volatilidade desse retorno, pode ser calculada por meio da modelagem GARCH, que mostra que \[ \sigma _{t}^{2}[k]=k\sigma _{t}^{2}(1). \]

Isto é, podemos escrever que \[ r_{t}[k]|\mathit{F}_{t-1}\sim \mathit{N}(0,k\sigma _{t}^{2}(1)). \] Portanto, sob os modelos adotados, a variância condicional dos log-retornos de \(k\) períodos é proporcional ao horizonte \(k\) e o desvio padrão condicional de \(r_{t}(k)\) é dado por \(\sqrt{k}\sigma_{t+1}\).

Por exemplo, utilizando uma posição comprada e um nível de confiança X=95, o RiskMetrics usa \(-1,65\sigma_{t+1}\) como VaR, representando o 0,05-quantil da distribuição normal com média zero e variância \(\sigma_{t}^{2}\), obtemos

\[ \mathit{-VaR=} \text{(Valor da Posição)}\times(-1,65)\times (\sigma _{t+1}), \]

representando a medida de um período. O VaR de \(k\) períodos é dado por: \[ \mathit{-VaR=} (Valor da Posição)\times(-1,65)\times\sqrt{k}\times (\sigma _{t+1}). \]

VaR utilizando o método de Variância e Covariância

Da mesma forma que a estimação anterior, o método de variância e covariância assume que a distribuição de retornos do portfólio pode ser aproximada por uma normal. Esse método pode ser definido por \[ VaR(a_{1},a_{2},…,a_{n},X)=-\mu +z_{X}\sigma, \] no qual, \(a_{n}\) representa a participação do ativo \(n\) na carteira, \(\mu\) representa a média dos retornos ponderada pela alocação de cada ativo, ou seja, o retorno esperado, e \(z_{X}\) representa o \(X\) quantil da distribuição normal conjunta, dado que são vários ativos. As quais podem ser calculadas por \[ \mu =\sum_{i=1}^{n}a_{i}m_{i} \] e \[ \sigma ^{2}=\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}a_{j}\sigma _{i,j}, \] nas quais, \(m_{i}\) representa o retorno esperado de cada ativo e \(\sigma_{i,j}\) representa a covariância entre os ativos “i” e “j”.

VaR utilizando o Método Não-Paramétrico ou Simulação Histórica

O método dos quantis empíricos, consiste em reunir dados históricos do portfólio, montando uma distribuição com os retornos através do tempo e, de acordo com a distribuição obtida, selecionar a perda a qual é maior apenas que os (100-X)% retornos históricos. Este é um método não-paramétrico, ou seja, não requer que a distribuição seja caracterizada por parâmetros, sendo útil em casos de dados resistentes à transformações e não normais, além disso, sua vantagem é a adequação às distribuições assimétricas.

VaR utilizando a Simulação de Monte Carlo

Simulações de Monte Carlo são tipicamente utilizadas em processos os quais não podem ser previstos facilmente devido à intervenção de variáveis aleatórias. Uma maneira de utilizá-lo é modelando possíveis movimentos nos preços de um ativo em softwares como o Excel.

Para realizar tal simulação deve-se primeiro estipular um modelo para a evolução dos preços dos ativos. Um dos modelos conhecidos é o Movimento Browniano Geométrico, no qual primeiro observa-se que existem dois componentes no movimento dos preços de um ativo: deriva \((\mu)\), que é um movimento direcional constante, e um componente aleatório \((\alpha)\), representando a volatilidade do ativo. Além disso, obtemos a deriva e o desvio padrão baseando-se em seu histórico, por meio de um processo chamado de calibração do modelo.

Para tanto, projeta-se a trajetória de um ativo, utilizando os dados históricos de seu preço para gerar uma série de retornos diários, usando o logaritmo natural: \[ \text{Retorno Diário}=ln(\frac{\text{Preço do dia}}{ \text {Preço do dia anterior}}). \] Em seguida, calculamos a média de retornos diários \((\bar{r})\), a variância \((\sigma^{2})\), o desvio padrão \((\sigma)\) e obtemos a deriva e a componente aleatória por meio de: \[ \mu=\bar{r}-\frac{\sigma^{2}}{2} \] e \[ \alpha=\sigma\times(\text{Valor aleatório}). \] Sendo \((\text{Valor aleatório})\sim N^{-1}(0,1)\), podemos obter o preço do dia seguinte por meio de: \[ \text{Preço do Dia Seguinte}=(\text{Preço do dia})\times e^{(\mu+\alpha)} \] Ao repetir esse cálculo quantas vezes necessário (cada repetição representando um dia), obtemos uma simulação do movimento futuro do preço. Ao gerar um número grande de simulações, pode-se encontrar a probabilidade associada ao preço que o ativo pode atingir em determinado horizonte de tempo.

A frequência dos diferentes retornos gerados por essa simulação formarão uma distribuição normal, assim como o primeiro método apresentado.

Deficiências do VaR

Em sua essência o VaR consegue responder a uma única pergunta “o quanto as perdas podem ser ruins?”. Porém, apesar do VaR proporcionar ao investidor o potencial de perda de um portfólio, ele acaba tendo muitas críticas por conta de suas deficiências.

Inicialmente, pode-se observar que o VaR é inconclusivo para perdas maiores que as especificadas pelo determinado nível de confiança, ou seja, não possuímos informações suficientes para analisar um caso extremo que supere a probabilidade estipulada. Isso é dado pelo fato dessa métrica não utilizar uma relação entre as maiores perdas, e sim escolher o valor da perda no (100-X)-quantil. Tal problema é observado no caso abaixo:

Figura 3: Distribuição de retornos assimétrica

Assim como inúmeras métricas utilizadas nas finanças, o VaR depende das componentes utilizadas na estimação, estando exposto a deficiências nesse processo, por exemplo, no caso de um ativo cuja distribuição de retornos seja assimétrica ou com maior achatamento, ao utilizar o método da variância e covariância, assume-se que a distribuição de retornos segue a normal, ocasionando em uma análise errônea. Além disso, a existência de diferentes métodos para se calcular o VaR de um portfólio faz com que para cada cálculo haja um resultado diferente para o risco.

Por fim, analisando as quatro propriedades de medidas coerentes de risco, observadas em Hull (2012):

Monotonicidade: se um portfólio produz um resultado pior que outro portfólio por qualquer razão, sua medida de risco deve ser maior;

Invariância por translação: se uma quantidade K de capital é adicionada a um portfólio, sua medida de risco deve cair K;

Homogeneidade: mudar o tamanho do portfólio por um fator \(\lambda\) enquanto mantêm-se as quantidades relativas dos ativos, a medida de risco deve ser multiplicada por \(\lambda\);

Subaditividade: a medida de risco de dois portfólios quando é feita sua fusão não deve ser maior que a soma de suas medidas de risco antes da fusão.

Observa-se que, apesar de sempre satisfazer as três primeiras propriedades, há casos nos quais o VaR não satisfaz a quarta, tornando-o uma medida não coerente de risco.

Vantagens

Em meio a essa série de desvantagens o VaR se sustenta como uma das principais ferramentas na análise de riscos. Isso pode ser explicado dado sua capacidade de admitir a comparação de valores, que são expressos em unidade monetárias. Assim sendo, permite a comparação entre ativos de diferentes áreas do mercado. Além disso, sua larga utilização permite a comparação de riscos entre vários âmbitos tais como comparação de portfólios e entre diferentes setores.

Vantagens e Desvantagens de cada método

Método Paramétrico:

Por ser um método simples, requer pouca força computacional, mas sua simplicidade custa na confiabilidade da estimativa, que é limitada pelo uso da distribuição normal, não funciona bem para ativos que tenham retornos não lineares e pode subestimar o VaR em altos níveis de confiança e o sobrestimá-lo em baixos níveis.

Método Não-Paramétrico:

O método de simulação histórica é fácil de ser implementado. Os dados referentes ao cálculo geralmente apresentam-se em domínio público e não são necessários softwares complexos para se realizar o cálculo, de maneira que planilhas de cálculo simples são eficientes. A simulação histórica também não leva em conta suposições em relação a distribuição dos retornos e elimina a necessidade de se utilizar a matriz de covariância e outros parâmetros. Apesar disso, o método supõe que a distribuição de retornos do ativo se manterá a mesma, o que pode não ser razoável, e requer bases de dados sobre o preço do ativo, as quais nem sempre apresentam o tamanho suficiente.

Método de Monte Carlo:

O método de Monte Carlo é capaz de calcular de maneira eficiente o VaR devido ao uso de simulações não-lineares e de parâmetros, à possibilidade de adequá-la a diferentes distribuições estatísticas e ao fato de não ser tão afetada por eventos extremos. Apesar disso, é o mais complicado dentre os métodos apresentados, custando mais tempo para ser desenvolvido e necessitando grande capacidade de processamento de dados.

Referências

Hull, John. 2012. Risk Management and Financial Institutions,+ Web Site. Vol. 733. John Wiley & Sons.

Morettin, Pedro Alberto. 2008. “Econometria Financeira: Um Curso Em Séries Temporais Financeiras.”

Contribuiu como co-autor deste artigo o analista do núcleo de derivativos e risco Vinícius Custódio. LinkedIn

Posted by Arthur Vier in Derivativos & Riscos, 0 comments