CAPM

RAPMs – Markowitz, CAPM e indicadores de risco e retorno

RAPMs – Markowitz, CAPM e indicadores de risco e retorno

RAPMs – Risk Adjusted Performance Measures – Parte 1
 
Diversos artigos do núcleo de Risco & Derivativos abordam a questão de gerenciamento de risco em um portfólio ou instituição. Neles, os membros do Clube de Finanças dissertam sobre métricas como o VaR (Value at Risk), os avanços do ES (Expected Shortfall), Risco de mercado, Princípios de Basileia e Teoria do Valor Extremo. Essas métricas são relacionadas às exposições das instituições financeiras em determinados ativos ou conjunto de ativos (portfólio), normalmente sob responsabilidade de um gestor de risco de mercado. Entretanto, métricas de risco podem ser utilizadas por outros profissionais no mercado financeiro com propósitos diferentes, como o gestor profissional de ativos ou o investidor pessoa física.

No livro Quantitative Methods in Finance (2008), a Profa. Carol Alexander coloca diferentes papéis para o gestor de risco de mercado e o gestor de ativos. O primeiro possui a necessidade de mensurar o risco de um portfólio frequentemente (e.g. diariamente) e não possui como principal preocupação o retorno desse conjunto de ativos. Por outro lado, o gestor de ativos tem como prioridade gerar retorno para seus investidores, assim como reportá-los e contextualizar os riscos envolvidos. Em um fundo de investimentos, por exemplo, essas duas variáveis são observadas em relação ao benchmark.
 
Tomando um fundo de investimentos como referência, caso um gestor considere somente o retorno de um ativo ou portfólio, uma parte excessiva do patrimônio seria alocada em ativos com retornos esperados (E(r)) acima da média, porém, possivelmente com riscos proporcionais. Sob outra perspectiva, caso o gestor considere somente o risco, pouco do patrimônio do fundo seria alocado neste(s) ativo(s).

O intuito do presente artigo é introduzir algumas métricas de risco utilizadas na gestão de ativos, mais precisamente indicadores de risco e retorno, conhecidos como Risk Adjusted Performance Measures (RAPMs).
 
Os primeiros RAPMs foram introduzidos no mercado financeiro durante a década de 60, juntamente com o Capital Asset Pricing Model (CAPM), originalmente proposto por William T. Sharpe (1964) e posteriormente por John Litner (1965). Visto que muitos RAPMs estão ligados ao CAPM, começaremos o artigo com uma revisão desse modelo, já citado em outras publicações do Clube de Finanças. 
O CAPM foi criado com base no trabalho de Harry Markowitz sobre diversificação e teoria moderna de portfólios, introduzida na década de 50. Apesar do tempo, esses trabalhos ainda são amplamente utilizados para estimativas de custo de capital e para avaliações da performance de gestão de portfólios, esse último, objeto deste artigo.
 
De forma breve, o modelo de escolha de portfólio desenvolvido por Markowitz (1959) presume que um investidor no tempo t-1 escolhe um portfólio que produz um retorno estocástico no tempo t. Como premissa, esse investidor é avesso ao risco e preocupa-se somente com a média e variância do retorno nesse período (entre t-1 e t). Nessa escolha, o investidor opta por um portfólio “média-variância-eficiente”, portanto, portfólios que i) minimizam a variância do retorno e ii) maximizam o retorno esperado, dada a variância do retorno.

Fonte: Fama and French (2004)

A figura acima demonstra a intersecção entre o trabalho de Markowitz e o desenvolvimento do CAPM.

 

O eixo horizontal do gráfico mostra o risco de determinado portfólio através do desvio padrão dos retornos e o eixo vertical demonstra o retorno esperado dos portfólios. Ao longo da curva abc, a qual é chamada de “fronteira de variância mínima” ou fronteira eficiente, é possível observar portfólios de ativos que minimizam a variância do retorno em diferentes níveis de retorno esperado, nesse primeiro momento com uma restrição em relação aos empréstimos com taxas livres de risco. No ponto T, por exemplo, o investidor que aceita volatilidade pode encontrar um portfólio com retorno esperado maior sem adicionar tanto risco (portfólios com maior desvio padrão). O ponto T pode ser interpretado como um portfólio “média-variância-eficiente”.

Ao retirarmos a restrição de empréstimos com taxas livres de risco, a fronteira eficiente torna-se uma linha reta, como a que passa pelos pontos Rf e g. Para entendimento dessa curva, podemos imaginar um fundo que investe uma proporção x de seu patrimônio em um ativo livre de risco (títulos do tesouro dos Estados Unidos, T-bills, por exemplo) e 1-x em um portfólio g. Se todo o patrimônio for direcionado para ativos livre de risco, o retorno esperado será o ponto Rf (taxa de juros livre de risco) no eixo vertical. Dessa forma, combinações entre ativos livres de risco e alocações em g formam a linha Rf-g. 

O portfólio g é uma dentre as infinitas combinações de ativos na curva abc e abaixo dela. Considerando a premissa de que o investidor opta por um portfólio ”média-variância-eficiente”, altera-se a inclinação da linha Rf-g até o ponto de tangência T, logo, nesse exemplo, os portfólios eficientes são combinações entre um ativo livre de risco e o portfólio T. Com um entendimento das distribuições dos retornos e a premissa de simetria de informações, os investidores tendem a optar pelo mesmo portfólio T, o qual os autores passam a denominar de M, em alusão ao “mercado”. 

A reta Rf-M é definida como a Capital Market Line (CML), a representação gráfica de diversos portfólios que otimizam combinações de risco e retorno, tanto em cenários de investimento (lend), como captação (borrow) à taxas de juros livres de risco.

Fonte: Alexander (2008)

Feitas as considerações acima, podemos entrar no conceito do CAPM e entender a sua relação com outras métricas que serão apresentadas. O modelo surge como uma forma de explicar o retorno dos ativos como um agregado de componentes do retorno. Tradicionalmente ele é utilizado em um contexto onde um ativo com risco, como por exemplo a ação de uma empresa, está prestes a ser adicionado à um portfólio diversificado e busca responder a seguinte questão: qual deveria ser o retorno adicional para justificar a inclusão deste ativo no portfólio diversificado?

Após a introdução do conceito podemos passar para a sua definição. Originalmente, o modelo CAPM Sharpe-Lintner foi baseado no conceito de equilíbrio de mercado, onde o excesso de retorno esperado de um ativo i (E(Ri) – Rf) seria proporcional ao retorno adicional do mercado (E(Rm)-Rf), aqui citado como o portfólio M.

Equação 1:


Com base na fórmula acima e uma pequena manipulação algébrica, o retorno esperado de um ativo i é a taxa livre de risco Rf, mais um prêmio pelo risco, o qual é definido pelo Beta do ativo i (beta i) multiplicado pelo prêmio por unidade de “risco beta”, E(Rm) – Rf.

Na equação apresentada, o Beta do ativo i é a covariância dos retornos do ativo i e do mercado divididos pela variância do retorno do mercado. Na prática, ele pode ser calculado através de uma regressão linear simples dos retornos do ativo contra os retornos do mercado. O beta será o coeficiente angular da reta de regressão.

 Equação 2:

Ao pensar em um modelo de regressão para estimar o retorno esperado de um ativo, podemos chegar na seguinte equação: 

Equação 3:

 

Onde os componentes da equação continuam com o mesmo significado, porém, o retorno de determinado ativo não é explicado totalmente pelo excesso de retorno do mercado, surge um termo de erro aleatório ẽ. 

Para facilitar o entendimento das métricas que serão apresentadas, faremos uma alteração no CAPM Sharpe-Lintner. Como já foi comentado, as equações 1 e 3 podem ser eficientes para responder a principal questão do CAPM e por consequência estimar o risco sistemático de um ativo individual ou um de um portfólio não gerenciado ativamente. Porém, ao aplicar essa fórmula para um portfólio gerido ativamente, o gestor pode selecionar ativos com um ẽ significativamente maior do que zero, em função de habilidades ou conhecimentos que não estão disseminados no mercado. Com isso, o portfólio não será explicado somente pelo seu beta, o que é plausível em um contexto onde existe um gestor de ativos, portanto, um ponto falho do CAPM Sharpe-Lintner.

Em estudos posteriores, autores como Jensen (1968),  Douglas (1968), Black, Jensen & Scholes (1972), Fama & MacBeth (1973) e Fama & French (1992), encontraram que o intercepto da equação do CAPM é consistentemente maior do que a taxa livre de risco Rf. Além disso, as regressões mostraram que, em média, o prêmio por unidade de “risco beta”, é consistentemente menor do que o excesso de retorno do mercado em relação à taxa livre de risco, E(Rm) – Rf. Dessa forma, para facilitar o entendimento dos próximos tópicos do artigo, adotaremos a equação proposta por Jensen em seu trabalho de análise de performance de fundos mútuos.

 Equação 4:

Onde o intercepto 𝛼 (alpha) pode ser entendido, segundo Jensen, como o retorno médio incremental no portfólio devido à habilidade do gestor de ativos. De outra forma, é possível definir o 𝛼, posteriormente denominado de alpha de Jensen, como o retorno do portfólio não explicado diretamente pelo retorno adicional do mercado em relação ao ativo livre de risco, E(Rm) – Rf.

RAPMs baseados no CAPM

Nessa parte do artigo apresentaremos os RAPMs que surgiram concomitantemente com o CAPM, logo, fazem referência ao modelo. Esses RAPMs introdutórios podem ser utilizados para rankeamento de portfólios por uma ordem de preferência, de acordo com as intenções do investidor ou gestor de ativos. 

Sharpe Ratio 

O Sharpe Ratio foi desenvolvido por WIlliam F. Sharpe e assim como os outros RAPMs leva em conta o retorno de um ativo em relação ao risco. O indicador é interpretado como o excesso de retorno de um ativo em relação ao ativo livre de risco, por unidade de volatilidade (𝜎 desvio padrão).

Aqui, fazemos a primeira referência à parte introdutória do artigo. O Sharpe Ratio é a inclinação da Capital Market Line (CML), portanto, quanto o retorno esperado do ativo ou portfólio aumenta/diminui com mudanças na volatilidade (𝜎 desvio padrão). De forma breve, portfólios com Sharpe ratios maiores tendem a ser priorizados por investidores e gestores de ativos em um rankeamento. É importante pontuar que, ao considerar o E(R) do ativo, presume-se que os retornos sejam normalmente distribuídos, o que muitas vezes não acontece na prática.

Fonte: Alexander (2008)

Treynor Ratio
Supondo a existência de um 𝛼 (vide equação 3) nos retornos de um ativo/portfólio com risco, sob a ótica do CAPM, Treynor propôs um indicador associado à esse retorno não correlacionado com o mercado.

O Treynor Ratio possibilita ordenar portfólios de acordo com os retornos não explicados pelos retornos de mercado, por unidades de risco sistemático (Beta).
 
Information Ratio ou Appraisal Ratio

O appraisal ratio possui suas origens na teoria proposta por RIchard Grinold e aprofundada por Clarke, de Silva e Thorley sobre a Law of Active Management, a qual busca conceituar o valor adicionado pelos gestores de ativos/portfólios. O appraisal ratio foi criado com o objetivo de mensurar e distinguir as habilidades dos gestores de ativos.

Como é possível observar na fórmula acima, gestores de portfólios com retornos ativos (𝛼) por unidade de risco (𝜎 desvio padrão), possuem um appraisal ratio maior.

Limitações

O CAPM tem sido utilizado de forma ampla desde a década de 60 até os dias atuais e diversas adaptações foram feitas ao modelo, como é possível observar na equação 4 e nos estudos de Jensen (1968),  Douglas (1968), Black, Jensen & Scholes (1972), Fama & MacBeth (1973) e Fama & French (1992) citados anteriormente. Mesmo com a utilização frequente do CAPM, faz-se necessário entender as suas limitações e rigidez nas premissas. 

O CAPM Sharpe-Lintner define que o prêmio de risco esperado por um ativo está relacionado somente com o seu risco sistemático, ou seja, a sua relação com o retorno adicional de um portfólio de mercado (E(Rm) – Rf). Conforme comentado anteriormente, em outros estudos foi possível rejeitar estatisticamente que o prêmio por unidade de “risco beta”, é consistentemente menor do que o excesso de retorno do mercado em relação à taxa livre de risco, E(Rm) – Rf, assim como o intercepto é maior do que o retorno de um ativo livre de risco Rf. Uma alternativa ao modelo CAPM Sharpe-Lintner já foi discutida anteriormente em um artigo do Clube de Finanças. Ao considerar outras variáveis além do retorno do mercado, o modelo de 3 fatores de Fama e French surge como uma alternativa para a precificação de ativos.

Quanto às premissas, o modelo pressupõe que: (1) todos os investidores possuem utilidades de maximização de riqueza, em um período, avessas ao risco e podem escolher diferentes portfólios somente em função de suas médias e variâncias, (2) não existem impostos e custos de transação, (3) todos os investidores têm visões homogêneas sobre os parâmetros da distribuição conjunta de probabilidade dos retornos dos ativos/portfólios e (4) os investidores podem emprestar e tomar emprestado a uma taxa livre de risco. Dessa maneira, podemos perceber que existe certa rigidez nas premissas e na formatação do modelo ao considerar, por exemplo, que o retorno adicional de um ativo é explicado somente pelo retorno do mercado ou que todos os investidores possuem visões homogêneas sobre o comportamento da distribuição de retorno de um ativo.

Parte 2
 
Na parte dois falaremos sobre o Kappa, Omega e Sortino Ratios, assim como traremos algumas aplicações práticas desses índices.
 
> Referências

Jensen, Michael C., The Performance of Mutual Funds in the Period 1945-1964. Journal of Finance, Vol. 23, No. 2, pp. 389-416, 1967.

Vidyamurthy, Ganapathy. Pairs trading : quantitative methods and analysis. Hoboken, N.J.: J. Wiley, 2004.

Jensen, Michael C. and Black, Fischer and Scholes, Myron S., The Capital Asset Pricing Model: Some Empirical Tests. Praeger Publishers Inc., 1972.

Alexander, Carol. “Market Risk Analysis, Quantitative methods in finance”. John Wiley & Sons, 2008.

Leibowitz, Martin L. Modern portfolio management: active long/short 130/30 equity strategies, 2009.

Sharpe, William F. Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk, The Journal of Finance, Vol. 19, No. 3, 1964.

Fama, Eugene F. and French, Kenneth R. The Capital Asset Pricing Model: Theory and Evidence, Journal of Economic Perspectives, Volume 18, Number 3, 2004.

Posted by Thiago Ranzolin Barreto in Derivativos & Riscos, Equity Research, 0 comments
Conheça o modelo Fama French 3 Fatores

Conheça o modelo Fama French 3 Fatores

Apesar de o modelo de precificação de ativos CAPM de Sharpe-Lintner ser o mais conhecido no mundo das finanças e adminstração, este não é o melhor modelo para se explicar os retornos de ativos que carregam risco. Uma das opções mais difundidas, e que iniciou o movimento chamado modelo de fatores para precificação, conhecido no mercado também por modelos multi-fatores ou smart beta é o modelo de 3 fatores de Fama e French1.

Neste modelo os retornos dos ativos é explicado não somente pelos retornos de mercado, o primeiro e principal fator, mas também por outros dois fatores conhecidos como SMB ( Small minus Big ) e HML ( High minus Low ), que referem-se respectivamente aos fatores de tamanho da firma e “valor” precificado, no qual a relação valor contábil sobre valor de mercado é a proxy. Uma ação com alta relação contábil sobre mercado é considerada uma empresa de “valor”, enquanto que no caso contrário se enquadram as chamadas empresas de “crescimento”, ou glamor.

As carteiras, que são construídas no final de junho de cada ano, são as interseções de duas carteiras formadas em tamanho ( Market Equity, ME ) e três carteiras formadas pela razão entre patrimônio líquido contábil e valor de mercado ( Book-to-Equity e Market Equity, BE/ME). O ponto de corte de tamanho para o ano t é o patrimônio mediano de mercado da Bolsa de Valore de Nova Iorque – NYSE, no final de junho do ano t. A métrica BE/ME para junho do ano t é o patrimônio contábil do último exercício encerrado em t-1 dividido por ME para dezembro de t-1. Os pontos de corte para BE/ME são os percentis 30% e 70% da NYSE. Desta forma são criados os seguintes seis portfólios:

Firmas Pequenas Firmas Grandes
Ações Valor Small Value Big Value
Ações Neutras Small Neutral Big Neutral
Ações Crescimento Small Growth Big Growth

Estes dois fatores extras são construídos a partir de seis carteiras do tipo long-short, determinadas pela interseção entre os dois critérios de classificação, tamanho e valor. Assim o fator SMB é calculado através da média dos retornos das empresas pequenas menos a média dos retornos das empresas grandes.

\(SMB = 1/3 (Small Value + Small Neutral + Small Growth)\ \qquad \qquad – 1/3 (Big Value + Big Neutral + Big Growth)\)

Da mesma forma, o fator HML é construído por uma carteira long-short montada com a média dos retornos das empresas de valor menos a média do retorno das empresas de crescimento.

\(HML = 1/2 (Small Value + Big Value) – 1/2 (Small Growth + Big Growth)\)

O fator de mercado é a carteira formada com todas as empresas listadas nas bolsas do país ponderadas pelo seu valor de mercado. O retorno do fator é, assim como no CAPM, o retorno em excesso ao ativo livre de risco. De posse dos retornos de nossos três fatores, o modelo de precificação de Fama e French segue a relação:

$$R_a = R_f + \beta (R_m – R_f) + \beta_s SMB + \beta_v HML$$

onde o retorno em excesso do ativo de interesse, \(R_a – R_f\) é explicado pelo familiar \(\beta\) de mercado, como no CAPM, mas também pelos recém introduzidos fatores SMB e HML, com exposições \(\beta_s\) e \(\beta_v\) respectivamente.

Por exemplo, se nosso ativo de interesse for uma ação de “valor” espera-se que a exposição ao fator HML seja alta, ou seja, \(\beta_v\) será um valor relativamente elevado (quando em comparação com ações de crescimento). Com esta maior exposição ao fator valor, esta ação capturará melhor os retornos proporcionados por HML que não estão incluídos no mercado. Fama e French (1993)2 argumentam que seu modelo explica muito melhor a seção cruzada (cross section) dos retornos das ações que o modelo mais simples, CAPM. Enquanto que este explica aproximadamente 60 a 70% dos retornos das ações, seu modelo multi-fatores é capaz de explicar mais de 90% das variações ocorridas nos preços.

Este modelo foi um dos precursores dos modelos multi-fatores que hoje estão em voga no mercado. Atualmente estes modelos estão inseridos dentro de “estilos de investimento”, onde por exemplo, uma determinada carteira pode ser formada com exposição unitária ao fator de mercado mais um viés para ações de valor. Diz-se que esta carteira está inserida no estilo “valor” de investimento. Com esta alocação o retorno esperado da carteira será o retorno esperado do mercado, pois seu beta de mercado é unitário, mais a exposição desta carteira ao fator valor vezes o retorno esperado deste fator. Se o fator valor possuir retorno esperado positivo esta carteira pode se beneficiar e bater o mercado.

Mas os fatores SMB e HML de fato possuem valor esperado de retorno positivos? O professor Kenneth French mantém em seu site pessoal um grande banco de dados com os históricos destes fatores e vários outros. É uma biblioteca bastante rica em dados que vários pesquisadores utilizam e pode ser acessada de forma livre em: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. Abaixo apresentamos um gráfico de série temporal dos três fatores, mercado, tamanho e valor. Lembrando que os retornos dos fatores tamanho e valor já estão em excesso ao fator mercado, ou seja, uma carteira exposta a SMB é remunerada tanto pelo mercado quanto pelo fator em si.

A cada dia novos fatores vêm sendo descobertos e alguns desbancados, sempre na busca de um modelo ideal de precificação que una parcimônia na quantidade de fatores explicativos, boa aderência aos dados empíricos e mais recentemente, com fundamentação em teoria econômica para explicar sua validade. Considerando que estes fatores podem ser isolados do retorno de mercado e investidos de forma individualizada e cumulativa, não é coincidência que hoje vivemos uma explosão de produtos “multi-fatores”, “com estilo”, “smart beta” e afins.


  1. Fama, E. F., & French, K. R. (1992). The cross‐section of expected stock returns. the Journal of Finance, 47(2), 427-465. 

  2. Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of financial economics, 33(1), 3-56. 

Posted by Rafael F. Bressan in Derivativos & Riscos, Equity Research, 0 comments