Expected Shortfall

Análise de Risco de um Portfólio

Análise de Risco de um Portfólio

Introdução

Neste artigo será aplicado algumas técnicas de análise de risco em um portfólio de ações, com o intuito de obter uma análise mais práticas de tópicos estudados dentro do núcleo de Riscos & Derivativos do Clube de Finanças. O objetivo é aplicar diferentes técnicas de análise de risco e demonstrar como que os resultados obtidos podemos ser utilizados para o estudo do risco do portfólio.

As técnicas aplicadas serão: Value at Risk (VaR); Expected Shortfall; Stress Test; Matriz de correlação; Máximos Drawdowns, e o cálculo de alguns RAPMs.

O portfólio montado

O portfólio no qual iremos realizar as nossas aplicações, será uma carteira composto 100% por ações listadas na B3. Foram selecionadas as ações de algumas das maiores empresas da bolsa brasileira, visando englobar empresas sólidas e de diferentes setores de atuação, para evitar que riscos específicos de setores ou de empresas Small Caps distorçam os nossos cálculos.

Assim, o portfólio foi montado contendo 10 ações, todas com pesos igualmente distribuídos. São elas: ABEV3, B3SA3, BBDC3, BPAC3, ITUB3, MGLU3, PETR3, SANDB3, VALE3, WEGE3.

Value at Risk

O conceito de Value at Risk (VaR), foi introduzido pelo banco americano JPmorgan nos anos 90. Ele pode ser definido como a perda máxima que pode ocorrer com X% de confiança em um período de t dias.

Existem diferentes métodos possíveis para calcular VaR, diferentes métodos resultam em diferentes resultados. As duas formas mais comuns de se calcular, são através do método paramétrico e do método histórico, também conhecido como método não-paramétrico.

No método paramétrico, assumimos que os retornos seguem uma distribuição conhecida (normalmente a Gaussiana) e calculando o retorno esperado e o desvio padrão, podemos chegar no valor do VaR, para um dado nível de confiança.

Já o método histórico, como o próprio nome mostra, vai utilizar os retornos passados do portfólio para estimar a possível perda futura do mesmo.

De maneira geral, o cálculo da VaR envolve 4 etapas:

1. Determinar o horizonte de tempo em que é desejado estimar a perda potencial.

2. Selecionar o grau de confiança para o VaR que será estimado.

3. Criar uma distribuição probabilística dos possíveis retornos para o portfólio.

4. Calcular o VaR estimado.

Neste artigo serão aplicados o método paramétrico e o método não paramétrico no portfólio previamente montado. Ambos os métodos foram aplicados utilizando os níveis de confiança de 99%, 97,5%, 95%, que são tradicionalmente os níveis de confiança mais utilizados, e foi calculado o VaR do portfólio para 1 dia.

Tabela Descrição gerada automaticamente

O que os resultados nos mostram é que por exemplo, a um nível de confiança de 95%, a perda máxima esperada do nosso portfólio para daqui 1 dia é de 2,96%.

Ressalte-se, porém, que se a perda registrada no período for superior ao VaR calculado, não significa que o cálculo do VaR está incorreto, apenas que o valor da queda está nos valores que excedem o nível de confiança utilizado. Quando se utiliza 95% de nível de confiança, isso significa que existe uma chance de 5% de o valor registrado superar o VaR calculado. Tal fato pode ser visualizado no gráfico abaixo:

Diagrama Descrição gerada automaticamente

Como sendo uma estatística quantitativa, o VaR captura somente riscos que podem ser quantificados, ou seja, ele não captura por exemplo, riscos de liquidez ou riscos operacionais.

Expected Shortfall

A Expected Shortfall, ou também conhecida como Conditional Value at Risk (CVaR), entra como uma espécie de complemento do VaR. Ela responde à pergunta de o que aconteceria se fosse registrado uma perda maior do que a perda máxima calculada pelo VaR. É visando esses casos que se calcula a Expected Shortfall.

A ideia do seu cálculo é selecionar todos os valores que estão fora do nível de confiança, e calcular uma média desses valores. De uma forma análoga, também pode-se definir o cálculo como sendo a área da distribuição que abrange os valores não contemplados pelo VaR

Tabela Descrição gerada automaticamente

Vale destacar que o Extected Shortfall sempre dará um valor superior ao VaR, pois como foi visto pela sua definição, ele trata dos valores superiores ao Value at Risk.

A interpretação dos resultados funciona da mesma maneira que para o VaR. A perda média esperada para o período de 1 dia, caso ela ultrapasse o VaR, a um nível de confiança de 95%, é de 6,04% do valor inicial do portfólio.

Matriz de Correlação

Quando montamos o portfólio, foi destacado a importância de não selecionar muitas ações de empresas de um mesmo setor para evitar que eventos específicos de tais setores tenham uma influência muito grande sobre os cálculos. Em outras palavras, foram evitadas ações de empresas altamente correlacionadas, pois ações de um mesmo setor tendem a ter uma alta correlação.

A forma mais formal de analisar a correlação das ações de um portfolio de ações é através de uma Matriz de Correlação. Com ela podemos analisar como as diferentes ações do portfólio se correlacionam e avaliar de uma forma geral se a carteira está muito concentrada.

Tabela Descrição gerada automaticamente

Analisando a Matriz de Correlação do portfólio, podemos ver que ele aparenta ser composto por ações não muito correlacionadas entre si. Como dito, ações de um mesmo setor tendem a ter uma correlação mais alta, podemos ver que as ações do Banco Bradesco (BBDC3) e do Itaú (ITUB3) possuem a maior correlação do portfólio. Por outro lado, a Suzano (SUZB3) e o Banco do Brasil (BBDC3) possuem a correlação mais baixa.

RAPM – Sharpe Ratio

Risk Adjustment Perfomance Measures (RAPM), são métricas de riscos utilizadas para compreender melhor a relação risco e retorno de investimentos. Eles foram criados nos anos 60, pelo William Sharpe, criador do Capital Asset Pricing Model (CAPM), e as duas ferramentas são muito interligadas.

O RAPM mais conhecido é o Sharpe Ratio, ele basicamente nos diz quanto que um investimento está retornando, comparado a uma taxa livre de risco. Ele pode ser calculado pela fórmula abaixo, onde Rp é o retorno do portfólio, Rf a taxa livre de risco e σp o desvio padrão do retorno do portfolio.

No gráfico abaixo, podemos ver o comportamento do índice de Sharpe do portfólio ao longo do tempo, onde a média foi de um pouco inferior a 2.

Gráfico, Linha do tempo Descrição gerada automaticamente com confiança média

Máximo Drawdown

A principal utilidade do Máximo Drawdown é como uma métrica de risco, avaliando o desempenho passado do portfólio. Ele é usado pra nos mostrar as principais quedas passadas que o portfólio teve, em determinado período. No gráfico temos destacado os 5 maiores Drawdowns do portfólio nos últimos 3 anos.

Analisando o gráfico Underwater, podemos ter uma noção de como foram as principais quedas do portfólio nos últimos 3 anos.

Com essa ferramenta podemos observar como foram as quedas passadas do portfólio e, assim, ponderar se é um histórico de quedas que nos faria sentir seguros.

Gráfico, Gráfico de linhas, Gráfico de dispersão Descrição gerada automaticamente

Uma imagem contendo Gráfico Descrição gerada automaticamente

Analisando o gráfico Underwater, podemos ver que não foi um evento raro o portfólio registrar uma queda de aproximadamente 5%. Assim se um investidor não estiver disposto a se expor a uma volatilidade desse nível, o nosso portfólio não seria uma boa escolha de investimento.

Para exemplificar melhor a utilidade deste gráfico, vamos analisar o Underwater plot do Bitcoin.

Gráfico, Histograma Descrição gerada automaticamente

Com ele podemos ver melhor a utilidade desta análise, para visualizar as piores perdas passadas de um ativo ou portfólio. No caso do Bitcoin fica claro que um investidor que deseja investir neste ativo deve estar disposto a passar por períodos de muita volatilidade, enfrentando forte quedas constantemente.

Stress Test

O Stress Test é um processo amplo que pode ser aplicado a um portfólio de investimentos, com o objetivo de verificar como que os ativos seriam afetados de acordo com cenários adversos.

O Stress Test pode ser usado com o intuito de avaliar o desempenho do portfólio como um todo em cenário de instabilidade, e para avaliar o desempenho dos ativos individualmente, e assim permitir analisar quais ativos dentro do portfólio seriam os mais sensíveis a instabilidades no mercado.

Para o portfólio em questão foi aplicado um Stress Test histórico, onde aplicamos o portfólio atual em crises passadas. Os cenários passados utilizados podem ser crises econômicas, políticas, momentos de incerteza sobre o mercado, basicamente qualquer cenário que possa impactar os ativos dentro do portfólio.

Foram selecionados 3 períodos de fortes quedas do mercado e comparado os desempenhos hipotéticos do portfólio nessas quedas, frente ao desempenho que o Ibovespa teve nesses períodos.

Os períodos selecionados foram: o impacto da crise de 2008 na bolsa brasileira, o Joesley Day que ocorreu em 2017 e mais recente, a chegada da pandemia do corona vírus no Brasil em março de 2020.

No gráfico e tabela abaixo temos os resultados da aplicação, e podemos ver que o portfólio não se distanciou muito do desempenho do Ibovespa em nenhuma das situações. O que já era de se esperar, pois o portfólio é composto por algumas das maiores ações do índice.

Gráfico, Gráfico de cascata Descrição gerada automaticamente

Com os resultados do Stress Test obtidos, é possível estabelecer as chamadas Políticas de Resposta. É através delas que, a partir da identificação dos principais pontos fracos do portfólio, buscamos aplicar medidas a fim de fortalecer a carteira, seja com um rebalanceamento do portfolio ou um Hedge com derivativos no mesmo.

Referências

Alexander, Carol. And Sheedy, Elizabeth. The Professional Risk Manager’s Handbook: A Comprehensive Guide to Current Theory and Best Practices. 1 ed. PRMIA Publications, 2005.

JORION, Philippe. Financial Risk Manager Handbook. 3. ed. New Jersey: John Wiley & Sons Inc, 2007

JORION, Philippe. Portfolio Risk: Analytical Methods. Value At Risk: The New Benchmark for Managing Financial Risk. 3. ed.

Posted by Davi Scherer in Derivativos & Riscos, 1 comment
Fluxo de Caixa em Risco

Fluxo de Caixa em Risco

Na trajetória sobre quantificação de riscos analisa-se também ativos não financeiros, para isso aborda-se, neste artigo, o modelo denominado Cash-Flow-at-Risk (CFAR), um modelo que utiliza a mesma metodologia do Value-at-Risk, mas modificado para mensurar os riscos do setor corporativo.

A definição do CFAR se assimila a do VaR sendo aquele a pior perda nos fluxos de caixa em determinados nível de confiança e período. O horizonte de tempo é selecionado, geralmente, para corresponder a um ciclo de planejamento corporativo.

Para distinção entre os riscos financeiros e corporativos há duas categorias de preços de mercado, as exposições a valor (Value-exposures) e exposições a fluxo de caixa (Cash Flow-Exposures). As exposições a valor refletem ativos como portfólios com taxas de juros fixas, moedas estrangeiras ou estoque de matéria prima, para modelá-las e mensurá-las, utiliza-se o VaR.

Exposições a fluxo de caixa incluem pagamentos fixos e posições nas quais o fluxo de caixa é incerto e não pode ser agregado diretamente a um valor presente. Por exemplo, vendas futuras ou gastos com matérias primas, desde que não seja possível prever, seguramente, as quantidades necessárias. A dependência entre os riscos dos preços e dos gastos de uma companhia podem ser modelados, enquanto mapear as dependências entre preços e vendas é mais desafiador.

Modelando a incerteza

Para modelagem de riscos nas empresas deve-se levar em conta o viés de operação, a incerteza dos fluxos de caixa futuros e a dependência entre as mudanças nos preços do mercado e nos lucros, requerendo, para isso, modelos flexí­veis. Como exemplo, uma mudança na taxa de câmbio pode afetar de maneira significante as vendas de uma empresa exportadora.

Nesse contexto, algumas modificações ao modelo de Value-at-Risk devem ser efetuadas. Como fluxos de caixa são incertos, não se pode determinar um valor presente, portanto, ao invés de analisar apenas o valor presente, será feita a análise baseada em todos os fluxos de caixa e ao invés de olhar apenas para a distribuição de riscos ao fim do horizonte de tempo, simula-se todo o trajeto desse fator de risco durante o período analisado.

Para o processo de simulação, será utilizado o Passeio Aleatório. Passeio Aleatório é um processo aleatório e sua escolha se baseia na ideia de que os fatores de risco, assim como os preços, só mudam quando os participantes do mercado obtêm novas informações. Se e quando as novas informações estiverem disponí­veis dependerá do acaso. Para utilizá-lo poderá ser feita a combinação do processo estocástico (Passeio Aleatório) com uma tendência (componente determinístico).

Ao realizar as simulações é necessário separar dois diferentes pontos de vista. Primeiro, receita e custos da companhia podem ser considerados, isso é a base para o modelo de CFAR. Segundo, o estabelecimento de pedidos e despesas pode ser simulado nas planilhas de balanço, representando o modelo de Earnings-at-Risk.

Como exemplo, a compra de matérias primas resulta e custos imediatos, mas não necessariamente despesas. A matéria prima só cria despesas ao entrar no processo de produção, portanto, nem todo custo culmina, de uma só vez, em despesas contábeis. Observa-se que a diferença entre modelos de fluxo de caixa (CFAR) e de ganhos (EAR) está nas diferentes inputs, sendo a modelagem matemática idêntica.

Independentemente do modelo escolhido, com ajuda de processos estocásticos pode-se simular quantos cenários de evolução de variáveis necessários. Na realização de aproximadamente 10.000 simulações, pode ser construída uma distribuição com intervalos de confiança bicaudal, na qual o intervalo depende da escolha da probabilidade pelo analista.

Mensuração do CFAR

O primeiro passo na mensuração de risco por meio do CFAR é a criação de um Mapa de Exposição, construído de maneira diferente por cada companhia baseado nos riscos enfrentados em seus setores. Nesse mapa, são identificadas todas as dependências entre volume de vendas e preços, seu objetivo é descrever como receita e despesas da companhia mudam de acordo com variações nos preços enfrentados.

A título de exemplo, pode-se analisar fluxos de caixa contratuais, tal como um contrato de venda de bens em moeda estrangeira, como o dólar. Esse contrato pode ser mapeado como uma posição comprada em dólar, com uma exposição econômica (ou exposição de ganhos) igual ao valor nocional do contrato.

O passo seguinte consiste em descrever a distribuição de risco das variáveis chave para a empresa, como preço de commodities, taxas de juros e taxas de câmbio. No exemplo utilizado anteriormente, seria modelada a evolução da taxa de câmbio BRL/USD, a qual pode ser feita por meio de Simulações de Monte Carlo.

Finalmente, as variáveis financeiras modeladas precisam ser atribuí­das às respectivas exposições econômicas, tornando possível a simulação do fluxo de caixa completo. Esta culmina em uma distribuição de ganhos que pode ser analisada de maneira idêntica ao VaR.

Modelando a exposição econômica

Neste tópico será apresentado apenas um modo de analisar os efeitos de variações no mercado em que a empresa está incluída com o intuito de apresentar a noção de modelagem. O gestor deve ter em vista que diferentes fatores podem ser levados em conta, atribuindo maior ou menor complexidade ao modelo, sua elaboração depende dos setores e indicadores aos quais a empresa está exposta, sendo necessária a adequação para cada realidade.

Seguindo o exemplo do exportador deve-se perguntar: como a taxa de câmbio afeta as receitas? Se a companhia compete com firmas nacionais, a apreciação do real afetará todas as exportadoras igualmente e elas podem ser capazes de aumentar os preços em dólar para cobrir seus custos no caso de a demanda pelo produto ser inelástica. Entretanto, se a companhia compete com exportadores estrangeiros, há possibilidade dela não ser capaz de aumentar os preços, culminando em perdas potencialmente grandes. Esses são casos de baixa e alta exposição ao câmbio.

Para generalizar a modelagem, pode-se escrever as receitas como função do preço do produto em moeda estrangeira (P), da quantidade vendida (Q) e da taxa de câmbio (S) expressa em reais. Assume-se que o preço P é estabelecido para manter Q e a elasticidade de P* em relação a S é η (taxa de mudança em P* dado uma mudança em S). Define-se a Elasticidade η como:

Se as quantidades não forem alteradas, pode-se escrever a receita em reais, ao isolar e , e substituí­-los, como:

Considerando que o exportador não tenha poder sobre o mercado, o preço em moeda estrangeira estabelecido pela companhia não pode ser afetado pela taxa de câmbio implicando que η=0. Nesse caso as receitas vão cair na mesma medida que a moeda deprecia em S.

No caso de o preço ser estabelecido em reais, qualquer depreciação do dólar pode ser balanceada por um aumento no preço P*. No caso de uma compensação perfeita η=-1 então os termos se cancelam e as receitas em dólar não são afetadas.

Por fim, num caso intermediário, o exportador pode ser capaz de compensar apenas parcialmente a queda na taxa de câmbio. Por exemplo, se η=-0,5, há necessidade de adequar as simulações de Monte Carlo utilizadas para derivar a distribuição de fluxos de caixa fazendo com que leve em conta o efeito da competitividade.

CFAR Aplicado

Analisando uma fábrica de ferramentas brasileira, que produz martelos e chaves inglesas, que são vendidos em caixas de 100 unidades. Uma caixa de martelos utiliza 50 kg de madeira e 100 kg de aço, enquanto uma caixa de chaves inglesas utiliza 10 kg de alumínio e 25 kg de cobre. O preço de venda de uma caixa de martelos é de US$ 110,00 e uma de chaves inglesas R$ 230,00.

Todas as matérias primas são negociadas em dólar, assim como as mercadorias prontas que são exportadas, além disso, a forte competição do setor não permite que mudanças no preço das matérias primas ou apreciação do câmbio sejam repassadas para os consumidores por meio de aumento de preços.

No dia 28/05/2020, o departamento de vendas da empresa planeja vender mensalmente 1000 caixas de martelos e 500 caixas de chaves inglesas, pelos próximos 12 meses, com variação de até 10%. Portanto, as vendas mensais de martelos serão entre 900 e 1100 caixas, assumindo um desvio padrão de 100, e as vendas de chaves inglesas entre 450 e 550, com desvio padrão de 50.

Primeiramente, monta-se um mapa de exposição, no qual todas as dependências entre volume de vendas e preços são sistematicamente identificadas. Para a companhia analisada, o mapa de exposição é composto por 4 equações e por simplificação assume-se que não há necessidade de estoques. No início de cada mês, as matérias primas são adquiridas e no fim do mês os compradores realizam o pagamento, ou seja, os custos em moeda estrangeira ocorrem no início do mês enquanto as receitas ocorrem no início do mês seguinte. Considerando tempos do transporte, da transferência de fundos e da janela de pagamento, sempre há demora entre o pagamento das matérias primas e venda do produto final, fazendo com que os pagamentos sejam feitos com taxas de câmbio diferentes.

Para ser capaz de lidar com aumentos inesperados no preço das matérias primas, o fluxo de caixa é calculado após subtrair os gastos com estas. Por exemplo, para vendas efetuadas no mês de janeiro, os custos com a matéria prima necessária são subtraí­dos.

Para cada um dos cinco fatores de risco relevantes (preços da madeira, aço, alumínio e cobre e taxa de câmbio BRL/USD) simula-se 10.000 caminhos para os próximos 12 meses (horizonte de planejamento). Estes 10.000 cenários, para os quais são modelados resultados nas mudanças nos fatores de risco com ajuda do mapa de exposição, permitem a simulação de 10.000 fluxos de caixa para o horizonte analisado, permitindo a estimação da distribuição dos fluxos de caixa do ano.

As simulações de Monte Carlo realizadas em R, com evolução baseada no Modelo Browniano Geométrico, foram realizadas utilizando dados da FactSet e agora permitem que sejam simulados os fluxos de caixa de cada um dos meses seguintes ao ponderar pelas quatro equações formadas de acordo com o operacional da empresa:

Agregando as simulações de resultados mensais chega-se à  Distribuição de Resultados Operacionais Anuais, sobre a qual calcula-se um CFAR de R$ 5.080.909,57 com um nível de confiança de 95%, como a distribuição analisada é a distribuição de ganhos, interpreta-se o valor como: o fluxo de caixa com pior desempenho dentre os simulados representa um lucro operacional de R$ 5.080.909,57 reais, com nível de confiança de 95% sobre um período de 12 meses. Já a linha que compreende os 5% melhores resultados da distribuição de ganhos representa um fluxo de caixa de R$ 5.386.815,92.

Por fim, delibera-se que o exemplo utilizado não aborda custos com salários, aluguéis e operação, porém essa abordagem é suscetí­vel à  modelagem das exposições e da operação da empresa, podendo ser aprofundada de acordo com a necessidades do gestor de riscos. O modelo Cash-Flow-at-Risk é o primeiro a abordar de maneira quantificável os riscos enfrentados por instituições não-financeiras e sua utilização tende a aumentar, tornando-se uma maneira eficiente de comparação entre diferentes setores do mercado.

Referências

Jorion, P. 2006. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill.

Perobelli, F. F., & Securato, J. R. 2005. “Modelo para mediação do fluxo de caixa em risco: aplicação a distribuidoras de energia elétrica.”. Revista de Administração de Empresas

Wiedemann, A., Hager, P., & Roehrl, A. 2003. Integrated Risk Management with Cash-Flow-at-Risk/Earnings-at-Risk methods. RiskNET.

Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Medidas de Risco com a Teoria do Valor Extremo

Medidas de Risco com a Teoria do Valor Extremo

Teoria do valor extremo (EVT da sigla em inglês) é um ramo da estatística que lida diretamente com eventos raros, extremos. Seu objetivo é modelar eventos que se distanciam muito da mediana de uma distribuição. Justamente por esta característica, a EVT está sendo utilizada para modelar riscos que possuem distribuição com caudas longas, um dos fatos estilizados que apresentamos sobre retornos de ativos financeiros.

No primeiro artigo desta sequência foi apresentada uma vasta revisão de literatura sobre a EVT e suas aplicações em finanças, com enfoque especial ao gerenciamento de risco. Neste artigo formalizaremos a teoria e serão apresentadas as equações para o cálculo tanto do VaR quanto do ES para um ativo financeiro. Também será abordada a diferença entre medidas incondicionais e condicionais de risco.

Ao utilizarmos a EVT, e mais especificamente o método conhecido como peaks over treshold – POT, estamos interessados em modelar apenas a parte da cauda da distribuição das perdas de um ativo financeiro maiores que um determinado valor de limiar u. É da modelagem desta cauda, portanto, que faremos as estimativas de risco VaR e ES.

Distribuição de valores extremos generalizada

Consideremos uma amostra de uma variável aleatória cujas observações sejam independentes e igualmente distribuídas (va iid) \(L_i,i\in \mathbb{N}\) que represente as perdas financeiras de um determinado ativo.

A EVT está interessada em investigar o comportamento da distribuição dos máximos desta va iid dados por \(M_n = \max (L_1, \ldots , L_n)\) para vários valores de \(n\) e a medida que \(n\rightarrow \infty\). A sequência \(M_n\) é chamada de máximos em bloco e é possível demonstrar que a única distribuição para a qual \(M_n\) converge com \(n\rightarrow \infty\) é a distribuição de valores extremos generalizada (GEV, da sigla em inglês).

Para tanto, é necessário normalizarmos esta sequência de máximos de forma que sua distribuição seja convergente para uma distribuição \(H(x)\) não-degenerada1. Seja \(F(x)\) a distribuição original de uma variável aleatória iid, é possível normalizar seus máximos em bloco através da relação \(M_n^*=(M_n-d_n)/c_n\) de forma que:

\[\begin{equation}
\lim_{n \rightarrow \infty} P\left(\frac{M_n-d_n}{c_n} \leq x \right)
= \lim_{n \rightarrow \infty} F^n(c_nx + d_n)
= H(x)
\tag{1}
\end{equation}\]

Em outras palavras, para determinadas sequências \(c_n\) e \(d_n\) a serem escolhidas, existe uma distribuição de \(H(x)\) não-degenerada a qual representa a distribuição dos máximos em bloco de \(F(x)\).

A potenciação de \(F\) em \(n\) deriva diretamente da suposição que a variável aleatória é iid, enquanto que a transformação de \(x \rightarrow c_n x+d_n\) é a normalização dos máximos em bloco.

Definição 1 (Domínio de atração de máximos) Se a equação (1) é válida para uma \(H\) não-degenerada, então se diz que \(F \in MDA(H)\), \(F\) pertence ao domínio de atração de máximos de \(H\).
Teorema 1 (Fisher-Tippett) Se \(F \in MDA(H)\) para alguma \(H\) não-degenerada, então \(H\) deve ser uma distribuição do tipo de valores extremos generalizada – GEV.

O teorema 1 foi estabelecido através de três artigos, Fisher and Tippett (1928), Gnedenko (1941) e Gnedenko (1943).

Definição 2 (Distribuição de valores extremos generalizada) É definida por sua p.d.f (função densidade de probabilidades) a qual é dada por:

\[\begin{equation}
H_\xi(x) =
\begin{cases}
exp(-(1+\xi x)^{-\frac{1}{\xi}}), & \xi \neq 0,\\
exp(-e^{-x}), & \xi = 0,\\
\end{cases}
\tag{2}
\end{equation}\]

O parâmetro \(\xi\) (leia-se qsi) é conhecido como o parâmetro de forma da distribuição e dependendo deste valor teremos diferentes tipos de distribuição (casos particulares da GEV). Quando \(\xi=0\) a distribuição resultante é uma Gumbel, quando \(\xi>0\) uma Fréchet surge, e por fim quando \(\xi<0\) temos uma Weibull.

Tomemos como exemplo a distribuição exponencial e calcularemos seu MDA e verificaremos se este está entre umas das distribuições GEV. Uma distribuição exponencial é caracterizada pela seguinte função de distribuição (c.d.f):

\[\begin{equation*}
F(x)=1-e^{- \beta x}, \beta > 0 \text{ e } x \geq 0
\end{equation*}\]

Se escolhermos as sequências \(c_n=1/\beta\) e \(d_n=\ln n /\beta\) podemos substituir diretamente na equação e calcular \(H(x)\).

\[\begin{equation*}
F^n \left(c_nx+d_n \right)=\left(1-\frac{1}{n}e^{-x} \right)^n
\end{equation*}\]

\[\begin{equation*}
\lim_{n \rightarrow \infty} \left(1-\frac{1}{n}e^{-x} \right)^n = H(x)
\end{equation*}\]

Fazendo uma simples substituição de variáveis, \(i=-e^{-x}\), então:

\[\begin{equation*}
H(x)=\lim_{n \rightarrow \infty}\left(1+\frac{i}{n} \right)^n
\end{equation*}\]

Que é o limite fundamental \(e^i\), o qual substituindo novamente \(i\) temos:

\[\begin{equation*}
H(x)=exp\left(-e^{-x}\right)=H_0(x), \text{Distribuição Gumbel}
\end{equation*}\]

Ou seja, a distribuição exponencial pertence ao \(MDA\) da distribuição Gumbel, a qual por sua vez é um dos casos particulares da GEV quando \(\xi=0\).

Via de regra não necessitamos calcular a qual \(MDA\) pertencem nossas distribuições, bastando saber que basicamente todas as distribuições contínuas de utilidade prática estão contidas em \(MDA(H_\xi)\) para algum valor de \(\xi\).

Excessos acima de um limiar

O método conhecido como POT, para calcular a função de distribuição dos valores que excedem um determinado limiar de um conjunto de dados vem sendo empregado no mundo financeiro para ajustar as caudas das distribuições de retornos, ou perdas, dos ativos. Este método é preferido a teoria clássica de valores extremos (e.g. máximos em bloco), pois, desperdiça uma quantidade menor de dados da série original. Qualquer valor que exceda o limiar pré-determinado é considerado na distribuição dos excessos. Esta distribuição dos valores da série que estão acima de um determinado limiar u é definida como:

Definição 3 (Distribuição dos excessos) Seja X uma variável aleatória com função de distribuição c.d.f F. A distribuição dos excessos sobre um limiar u tem a seguinte função de distribuição:

\[\begin{equation}
F_u(x)=P(X-u \leq x | X > u)=\frac{F(x+u)-F(u)}{1-F(u)}
\tag{3}
\end{equation}\]

para \(0 \leq x < x_F-u\), onde \(x_F \leq \infty\) é o limite direito da distribuição F.

Ou seja, a função distribuição dos excessos sobre um limiar u é a probabilidade condicional que um valor X retirado dos dados subtraído de u (o excesso) seja menor que um dado quantil x, sabendo-se que X é maior que u. Uma importante distribuição que surge na modelagem dos excessos sobre um limiar é a distribuição de pareto gereralizada – GPD, que segue.

Definição 4 (Distribuição de Pareto Generalizada) É definida por sua função de distribuição:

\[\begin{equation}
G_{\xi,\beta(u)}(X) =
\begin{cases}
1- \left(1+ \frac{\xi x}{\beta(u)} \right)^{-\frac{1}{\xi}}, & \xi \neq 0,\\
1-exp\left(-\frac{x}{\beta(u)}\right), & \xi = 0,\\
\end{cases}
\tag{4}
\end{equation}\]

onde \(\beta > 0\), e \(x\geq 0\) quando \(\xi \geq 0\) ou \(0 \leq x \leq -\beta / \xi\) quando \(\xi < 0\).

Os parâmetros \(\xi\) e \(\beta\) são conhecidos respectivamente como parâmetros de forma e escala da distribuição. Na figura 1 abaixo, são mostradas três parametrizações para a função de distribuição acumulada (c.d.f) e para a densidade de probabilidades (p.d.f) de GPD com parâmetro \(\xi\) iguais a -0,5, 0 e 0,5 enquanto que o parâmetro de escala \(\beta\) é mantido constante e igual a 1. Perceba como para \(\xi <0\) a p.d.f tem um limite direito que é dado por \(-\beta / \xi\) a partir do qual os valores de \(g(x)\) são zero.


Três parametrizações para uma GPD. A linha sólida corresponde a \(\xi=0,5\), a linha pontilhada a \(\xi=-0,5\) e a linha tracejada a \(\xi=0\).

Figura 1: Três parametrizações para uma GPD. A linha sólida corresponde a \(\xi=0,5\), a linha pontilhada a \(\xi=-0,5\) e a linha tracejada a \(\xi=0\).

A distribuição de Pareto generalizada tem papel fundamental na teoria de valor extremo em função do teorema de Pickands-Balkema-de Haan (Pickands (1975) e Balkema and Haan (1974)) conforme abaixo:

Teorema 2 (Pickands-Balkema-de Haan) Pode ser encontrada uma função \(\beta(u)\) tal que:
\[\begin{equation*}
\lim\limits_{u \rightarrow x_F} \; \sup\limits_{0\leq x <x_F – u} |F_u(x)-G_{\xi, \beta(u)}(x)| = 0
\end{equation*}\]

se e somente se \(F\in MDA(H_\xi)\) para \(\xi \in \mathbb{R}\).

O que este teorema nos diz é que para distribuições as quais os máximos em bloco normalizados convergem para uma GEV (na forma da equação (2)), então a distribuição dos excessos acima de um limiar destas mesmas distribuições convergem para uma GPD, dado um valor de limiar u adequado. Podemos fazer então a seguinte suposição:

Suposição 1: Seja F a distribuição de perdas com limite direito \(x_F\), assuma que para um valor limiar alto o suficiente u nós temos que \(F_u (x)=G_{\xi,\beta} (x)\), onde \(F_u (x)\) denota a distribuição dos excessos de x em relação ao valor de limiar u, para \(0 \leq x < x_F-u\), \(\xi \in \mathbb{R}\) e \(\beta > 0\).

Esta é uma suposição, uma vez que a distribuição dos excessos não segue exatamente uma GPD, mas apenas tende a esta distribuição dado um limiar u alto e uma amostra de dados grande o suficiente.

Dada a parametrização de uma GPD, é interessante sabermos o valor esperado desta distribuição, uma vez que esta medida de valor central nos fornece importante informação sobre a quantidade de risco que estamos buscando medir, assim como a informação de que a própria distribuição foi ajustada aos dados de forma satisfatória, como será demonstrado adiante.

O valor esperado de uma variável aleatória não negativa pode ser computado através da integral de sua cauda, \(P(X>x) = 1-P(X \leq x)\). A cauda da GPD é, para \(\xi \neq 0\), \(\left(1+\xi x / \beta(u) \right)^{-1/ \xi}\)

Bastando, portanto, integrar em relação a \(x\) sobre o domínio deste, que é de \(0\) a \(\infty\).

\[\begin{equation*}
\displaystyle\int\limits_{0}^{\infty} \left(1+ \xi x /\beta(u) \right)^{-1/\xi} dx
\end{equation*}\]

Desta forma, o valor esperado de uma GPD \(G_{\xi,\beta(u)} (X)\), ou seja, sua média, converge para valores de \(\xi<1\) e é dado pela seguinte equação:

\[\begin{equation}
E\left[G_{\xi,\beta(u)} (X) \right]=\frac{\beta(u)}{1-\xi}
\tag{5}
\end{equation}\]

Definição 5 (Função média dos excessos) A função média dos execessos de uma variável aleatória X com média finita é dada por:

\[\begin{equation}
e(u)=E\left(X-u | X > u\right)
\tag{6}
\end{equation}\]

Ou seja, a equação (6) representa o valor esperado da função de distribuição dos excessos dada pela Definição 3. Ela representa a média de \(F_u\) como uma função do limiar u. Esta função por vezes também é conhecida como função média de vida residual (mean residual life function), sendo encontrada esta denominação em alguns pacotes de software estatísticos.

Para uma variável distribuída na forma de uma GPD, o parâmetro de escala é uma função linear em u dado por \(\beta(u)=\beta + \xi u\), Teorema 3.4.13(e) em Embrechts, Klüppelberg, and Mikosch (1997). Utilizando-se deste fato e da equação (5) chegamos ao cálculo da função média dos excessos para uma GPD, dada por:

\[\begin{equation}
e(u)=\frac{\beta+\xi u}{1-\xi}
\tag{7}
\end{equation}\]

onde \(0 \leq u < \infty\) se \(0 \leq \xi <1\) e \(0 \leq u \leq -\beta / \xi\) se \(\xi < 0\). É possível observar que de fato a função média dos excessos em uma GPD é linear em u. Esta é uma característica importante de uma GPD e que nos auxilia a escolher um valor adequado do limiar u de tal forma que a Suposição feita anteriormente faça sentido.

Assim, quando estamos analisando uma determinada distribuição de perdas F e desejamos ajustar a cauda desta distribuição, ou seja, as perdas acima de um dado valor limiar u a uma GPD \(G_{\xi, \beta}(x)\) precisamos primeiramente determinar um valor adequado de u de modo que a suposição \(F_u(x)\rightarrow G_{\xi, \beta}(x)\) seja válida. Um método frequentemente utilizado é o gráfico da função média dos excessos com relação a u. Analisando este gráfico, escolhemos o menor valor de u para o qual a partir deste ponto a relação \(e(u) \text{ vs } u\) torna-se linear.

Desejamos o menor valor de u para o qual a relação é linear pois, mesmo o método POT implica em grande perda de dados da série temporal, já que apenas os valores acima deste limiar são utilizados para fazer a estimação dos parâmetros \(\xi\) e \(\beta\) da GPD. Portanto, existe um trade-off na escolha do valor limiar u, escolhendo um valor muito baixo termos uma boa quantidade de dados para estimar os parâmetros da GPD, mas a própria distribuição resultante não será GPD, uma vez que não estaremos trabalhando na região onde a relação \(e(u) \text{ vs } u\) é linear. Por outro lado, um valor limiar muito alto nos impõe o custo de trabalhar com poucos dados para fazer a estimação dos parâmetros da distribuição e por conseguinte, os erros padrões dessas estimativas serão elevados.

Lema 1 Sob a Suposição 1 segue que \(F_v (x)=G_{\xi,\beta+\xi(v-u)} (x)\) para qualquer valor limiar \(v \geq u\).

Logo, a distribuição dos excessos sobre limiares mais altos que u, também segue uma GPD com o mesmo parâmetro de forma \(\xi\) e parâmetro de escala que cresce linearmente com este limiar mais alto v. Se \(\xi < 1\), a média desta nova GPD converge e é dada por:

\[\begin{equation}
e(v)=\frac{\beta+\xi(v-u)}{1-\xi}=\frac{\xi v}{1- \xi}+ \frac{\beta-\xi u}{1-\xi}
\tag{8}
\end{equation}\]

Esta é a função média dos excessos sobre limiares mais altos, e está definida para \(u \leq v < \infty\) se \(0 \leq \xi < 1\) e, \(u \leq v \leq u-\beta / \xi\) se \(\xi < 0\).

Esta função é muito útil para calcularmos o \(ES_\alpha\) (expected shortfall), considerando que \(VaR_\alpha\) nada mais é que um quantil superior ao limiar \(u\) escolhido.

Modelando caudas e medidas de risco associadas

Através da modelagem da cauda da distribuição F de perdas por uma GPD, como feito na seção anterior, é possível calcularmos as medidas de riscos \(VaR_\alpha \text{ e } ES_\alpha\) para esta distribuição de perdas em função dos parâmetros da GPD estimada e também fazendo uso da distribuição empírica de F.

Sob a Suposição 1 nós temos que a cauda da distribuição F, \(\bar{F}(x)\), para \(x \geq u\) é dada por:

\[\begin{align}
\bar{F}(x) & = P(X>u)P(X>x|X>u) \nonumber \\
& = \bar{F}(u) P(X-u>x-u|X>u) \nonumber \\
& = \bar{F}(u)\bar{F}_u(x-u) \nonumber \\
& = \bar{F}(u)\left(1+\xi \frac{x-u}{\beta}\right)^{-1/\xi}
\tag{9}
\end{align}\]

Da qual se soubéssemos exatamente a distribuição F teríamos um modelo analítico para as probabilidades de perdas na cauda da distribuição. Aqui \(x\) são os valores a serem observados das perdas, e portanto \(x-u\) são as perdas em excesso ao limiar.

O que fizemos através da equação (9) foi efetivamente separar a distribuição F, ou melhor, sua cauda, em duas partes. A primeira parte, para valores menores que u, não foi modelado analiticamente e portanto utilizamos a distribuição empírica das perdas, aqui representada por sua cauda \(\bar{F}(u)\), que nada mais é que o número observado de excessos de u sobre o número total de observações da amostra.

A segunda parte é justamente a modelagem através de uma GPD com parâmetros \(\xi \text{ e } \beta\) dado o limiar u. Por esta modelagem paramétrica podemos conhecer as probabilidades de cauda para valores de x maiores que u.

O quantil \(\alpha\) é a inversa da função distribuição e nos retorna o valor para o qual um percentual \(\alpha\) de observações da amostra é menor ou igual. Assim sendo, \(VaR_\alpha\) nada mais é que um quantil alto para o qual determinamos que \(\alpha \%\) das perdas devem ser menores ou iguais a este valor.

Como a equação (9) fornece a probabilidade de cauda, então esta é igual a \(1- \alpha\) para um valor de \(\alpha \geq F(u)\). Fazendo \(\bar{F}(x)=1-\alpha\) na equação (9) o valor de x representará \(VaR_\alpha\) e nos basta manipular esta equação até isolarmos \(VaR_\alpha\) como função de \(\bar{F}(u), \alpha \text{ e dos parâmetros da GPD } \xi \text{ e } \beta\). Que nos garante a equação abaixo:

\[\begin{equation}
VaR_\alpha = q_\alpha(F) = u+\frac{\beta}{\xi}\left[ \left( \frac{1-\alpha}{\bar{F}(u)}\right)^{-\xi}-1 \right]
\tag{10}
\end{equation}\]

A medida \(ES_\alpha\) pode ser entendida como a média das perdas que excedem o valor dado por \(VaR_\alpha\). Como o próprio \(VaR_\alpha\) é um quantil acima do valor de limiar u, \(ES_\alpha\) é dado pelo valor do \(VaR_\alpha\) somado a função média dos excessos dada pela equação (8) fazendo \(v = VaR_\alpha\). Esta média é convergente para valores de \(\xi < 1\) conforme já demonstrado. Ou seja, \(ES_\alpha=VaR_\alpha + e(VaR_\alpha)\). A qual nos rende de forma mais geral:

\[\begin{equation}
ES_\alpha = \frac{VaR_\alpha}{1-\xi}+\frac{\beta-\xi u}{1-\xi}
\tag{11}
\end{equation}\]

Portanto, ambas medidas de risco \(VaR_\alpha\) e \(ES_\alpha\), para distribuições de perdas que tiveram suas caudas modeladas através de uma GPD da forma \(G_{\xi, \beta(u)}\) com \(\xi <1 \text{ e } \beta > 0\), podem ser calculadas respectivamente através das equações dadas em (10) e (11). As estimativas destas medidas de risco serão encontradas através das estimativas dos parâmetros da GPD, assim como do limiar utilizado e de uma medida empírica de \(\bar{F}(u)\) que será o número de excessos verificados sobre o total de amostras. É claro que, ao adotarmos esta estimativa para \(\bar{F}(u)\) estamos implicitamente supondo que o número de amostras na série de perdas é significativa, assim como o número de excessos verificados. Daí a importância de se utilizar um valor u adequado, conforme explicitado na seção anterior.

As estimativas de medidas de risco desenvolvidas nesta seção se qualificam como medidas incondicionais, no sentido que elas não dependem do estado atual das coisas, mas sim de todo o histórico de eventos de forma uniforme. Em outras palavras, \(VaR_\alpha \text{ e } ES_\alpha\) derivados a partir das equações (10) e (11) são medidas históricas de risco associado ao ativo em análise e não levam em consideração se nos eventos mais recentes a volatilidade das perdas pode ser diferente do valor histórico.

De fato, uma das características marcantes das perdas (ou retornos, como o leitor preferir) dos ativos financeiros é o chamado clustering de volatilidade, onde grandes volatilidades (retornos positivos ou negativos) têm tendência a ficarem próximas ao longo da linha temporal. Em geral estas aglomerações de volatilidades surgem a partir da autocorrelação destas, ou seja, a volatilidade em um período t é dependente das volatilidades verificadas em períodos anteriores. Um modelo bastante encontrado na literatura que busca modelar estas dependências é o modelo GARCH e suas variantes.

Assim, ao passo que as estimativas de risco desenvolvidas nesta seção são valiosas para prazos mais longos, ainda é necessário desenvolver um modelo que lide com o fato das autocorrelações de volatilidades e portanto, que nossa variável aleatória não é independente e igualmente distribuída ao longo do tempo. O modelo proposto por McNeil and Frey (2000) pode ser utilizado para encontrar as medidas de risco \(VaR_\alpha\) e \(ES_\alpha\) condicionais que desejamos, ainda dentro da metodologia de peaks over treshold.

Medidas condicionais de risco

Ativos financeiros possuem características de autocorrelação, senão em seus retornos propriamente ditos, ao menos em suas volatilidades ou variações absolutas. Ou seja, dada uma grande variação no momento t é de se esperar novamente uma grande variação, não necessariamente na mesma direção daquela anterior, para o momento t+1 e posteriores. Desta forma, medidas de risco incondicionais, conforme aquelas derivadas na seção de medidas de risco podem ser adequadas somente para horizontes temporais mais longos, pois implicitamente tomam em consideração os fatos mais recentes com o mesmo valor de predição que fatos mais longínquos.

Também já foi bastante estudado e mostrado no artigo anterior que modelos que levem em conta riscos condicionais ao incorporarem as autocorrelações nas volatilidades, levam a resultados de testes melhores. Assim, nesta seção trabalharemos com o modelo proposto por McNeil and Frey (2000) os quais fazem uma adequação dos retornos dos ativos a um modelo GARCH e posteriormente tratam os erros desta modelagem como iid e portanto, a metodologia de POT e ajuste de uma GPD pode ser feito. Este modelo pode ser entendido como um modelo condicional para medidas de risco pois, efetivamente, é levado em conta o estado atual da previsão para a média e principalmente para a volatilidade ao se calcular o VaR. Desta forma a medida responde rapidamente às variações nos humores do mercado e pode sinalizar de forma ágil uma inadequação de capital reservado pela instituição financeira.

Além desta vantagem de cunho prático, a técnica possui uma atratividade teórica. O método POT deve ser aplicado a séries iid que sabidamente não é o caso de perdas de ativos financeiros. Ao se utilizar a técnica POT nos resíduos padronizados de um modelo GARCH o que se está realizando é uma pré-filtragem destas perdas, de forma a obter resíduos padronizados que sejam iid e portanto, aplicável a teoria de valor extremo.

Primeiramente vamos estabelecer um modelo GARCH para as perdas do ativo subjacente. Se denotarmos \(L_t\) como sendo a perda observada no período t, \(\mu_t\) e \(\sigma_t\) são respectivamente a média e o desvio padrão condicionais e mensuráveis através do conjunto de informações disponíveis em t-1 e seja \(Z_t\) inovações iid com média zero e desvio padrão unitário, então temos que:

\[\begin{equation}
L_t=\mu_t+\sigma_t Z_t
\tag{12}
\end{equation}\]

Seja \(F_L(l)\) a distribuição marginal de \(L_t\), então \(F_{L_{t+1}} | \mathcal{G}_t(l)\) é a distribuição preditiva da perda para o próximo período, onde \(\mathcal{G}_t\) é o conjunto de informações disponíveis no período t, incluindo-o. Portanto, para o cálculo das medidas condicionais de risco estamos interessados em um quantil \(\alpha\) na cauda de \(F_{L_{t+1} | \mathcal{G}_t}(l)\). Este quantil \(\alpha\), que será o nosso \(VaR_\alpha\), é o ínfimo l tal que o valor da distribuição preditiva seja maior ou igual a \(\alpha\). Ao passo que o valor condicional do ES será o valor esperado das perdas previstas que sejam maiores que VaR para o mesmo intervalo de confiança. Ou seja:

\[\begin{align}
VaR_\alpha^t=&\inf\{l \in \mathbb{R}: F_{L_{t+1} | \mathcal{G}_t}(l) \geq \alpha\}, \\
ES_\alpha^t=&E[L_{t+1} | L_{t+1} > VaR_\alpha^t]
\end{align}\]

Considerando que nossa distribuição de perdas é dada pela equação (12) e sabendo das propriedades de variáveis aleatórias e do operador de expectância, as equações dadas acima subsumem a:

\[\begin{align}
VaR_\alpha^t=&\mu_{t+1}+\sigma_{t+1}z_\alpha, \tag{13} \\
ES_\alpha^t=&\mu_{t+1}+\sigma_{t+1}E[Z | Z>z_\alpha] \tag{14}
\end{align}\]

onde \(z_\alpha\) é o quantil \(\alpha\) das inovações Z.

Agora nos falta escolher um processo que modele nossa série temporal dada em (12), ou seja, precisamos especificar o comportamento de \(\mu_t\) e \(\sigma_t\). Por suposição do modelo, especificamos que o comportamento destas variáveis é dependente de acontecimentos passados, contidos no conjunto de informações \(\mathcal{G}_{t-1}\) . Dentre os diversos modelos já propostos para estimar médias e volatilidades condicionais, está o simples porém efetivo modelo GARCH(1,1) para a volatilidade condicional e o modelo AR(1) para a média condicional. Uma extensão destes modelos básicos para outros mais complexos pode ser facilmente obtida e é vasta na literatura, como exemplo modelos GARCH-M, Treshold GARCH, EGARCH, etc. para volatilidades condicionais e um modelo do tipo ARMA para a média.

Como critérios para a escolha deste modelo de filtro no primeiro estágio, deseja-se que as inovações \(Z_t\), através de suas realizações na forma dos resíduos padronizados estimados no modelo possuam 2 características, ausência de autocorrelação serial em seus valores e nos seus quadrados.

Neste artigo, visando aplicar a teoria do valor extremo para o cálculo das medidas condicionais de risco, não faremos maiores assunções acerca da distribuição das inovações, como por exemplo assumir uma determinada distribuição (e.g. Normal ou t de Student), mas está implícito que esta pertence ao MDA de uma GEV e portanto a distribuição de seus excessos sobre um limiar segue aproximadamente uma GPD.

Dadas estas considerações, o modelo adotado segue um formato em dois estágios para ser implementado, como segue.

Referências

Balkema, A A, and L de Haan. 1974. “Residual Life Time at Great Age.” The Annals of Probability 2 (5): 792–804. doi:10.1214/aop/1176996548.

Embrechts, P, C Klüppelberg, and T Mikosch. 1997. Modelling Extremal Events for Insurance and Finance. Springer.

Fisher, R A, and L H C Tippett. 1928. “Limiting forms of the frequency distribution of the largest or smallest member of a sample.” Proceedings of the Cambridge Philosophical Society 24: 180–90.

Gnedenko, B V. 1941. “Limit theorems for the maximal term of a variational series.” Comptes Rendus (Doklady) de L’Académie Des Sciences de L’URSS 32: 7–9.

———. 1943. “Sur la distribution limite du terme maximum d’une série aléatoire.” Annals of Mathematics 44: 423–53.

McNeil, Alexander J, and Rüdiger Frey. 2000. “Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach.” Journal of Empirical Finance 7 (3-4): 271–300. doi:10.1016/s0927-5398(00)00012-8.

Pickands, James. 1975. “Statistical Inference Using Extreme Order Statistics.” Annals of Statistics 3: 119–31. doi:10.1214/aos/1176343003.


  1. Distribuição degenerada é aquela cuja densidade de probabilidade está totalmente concentrada em apenas um ponto de seu domínio.
Posted by Rafael F. Bressan in Derivativos & Riscos, 2 comments
Risco de mercado, princípios de Basileia e a teoria do valor extremo

Risco de mercado, princípios de Basileia e a teoria do valor extremo

Neste artigo iniciaremos uma discussão sobre a utilização da teoria do valor extremo – EVT para o cálculo de risco de mercado de ativos financeiros. Desta forma, a EVT pode ser utilizada tanto para o cálculo de VaR quanto ES, recaindo sobre a categoria de modelo semi-paramétrico.

Este será o primeiro artigo de uma série de três. Nesta introdução a EVT, faremos uma vasta revisão da literatura aplicada a finanças. O segundo artigo apresentará ao leitor já familiarizado a modelagem matemática das medias de risco utilizando a EVT e por fim, o último artigo apresentará um estudo de caso, comparando diversos modelos para o cálculo do VaR e inferindo qual modelo é mais adequado com base em critérios bem definidos na literatura. Os artigos foram adaptados de um trabalho de iniciação científica do autor e, portanto, apresentam um caráter mais acadêmico que o normalmente encontrado nos artigos do Clube de Finanças. Ainda assim, o assunto é relevante e atual dentro do gerenciamento de risco das instituições financeiras e desta forma acreditamos que nossos leitores se beneficiarão desta série.

Introdução

A medição do risco de mercado ao qual os portfólios dos investidores está sujeito é objeto de devoção de esforços tanto por parte das instituições e investidores em geral como por parte dos reguladores. Instituições financeiras – IF em todo o mundo, de acordo com suas regulações locais e com os princípios de Basileia ( Basel Comittee on Banking Supervision – BCBS do Banco de Compensações Internacionais – BIS) são obrigadas a reservar uma parcela de seu capital como provisionamento contra flutuações adversas do mercado, como forma de mitigar seu risco de insolvência.

Estas instituições devem manter seu risco de insolvência controlado, e a percepção externa deve ser tal que não haja desconfiança do público com sua habilidade em controlar este risco. Se a confiança na instituição se esvai e a percepção de risco é elevada, rapidamente uma crise de liquidez pode surgir, com depositantes sacando seus recursos ao mesmo tempo em que outras fontes de funding também se tornam escassas. Em tal situação, é natural o banco ou IF, ir ao mercado para vender seus ativos e levantar os recursos necessários. Neste momento uma crise de liquidez no mercado pode levar a uma possível insolvência da IF pois, não há garantias que no mercado aberto, os ativos do banco serão justamente avaliados e arrematados.

Uma importante característica das séries de retornos financeiros é sua alta volatilidade, não constante e tampouco seguindo uma distribuição Normal. Assim, eventos extremos, e neste caso estamos interessados em perdas de grande magnitude, acontecem com uma frequência alta demais para serem descartadas como apenas outliers, e portanto passaram a atrair a atenção dos participantes do mercado, entre eles os investidores e reguladores. Estas observações induziram uma gama de estudos, empíricos e teóricos, voltados a explicar o comportamento dos retornos de séries financeiras e modelar de forma adequada as caudas da distribuição destes retornos. Não somente estes estudos são de grande relevância para o gerenciamento de risco nas instituições financeiras, como também são obrigatórios segundo o acordo de Basileia, uma vez que este requer o cálculo do Valor em Risco – VaR, para então a instituição poder projetar o seu nível requerido de capital.

De acordo com os princípios de Basileia III, BCBS (2011), BCBS (2013a), BCBS (2014), as instituições financeiras supervisionadas pelos Bancos Centrais devem manter buffers de capital contra riscos de mercado, crédito, liquidez, entre outros. Dentro dos riscos de mercado, as duas formas mais usuais de fazer a quantificação destes são os métodos de Valor em Risco – VaR e o Expected Shortfall – ES. Este último relacionado ao primeiro, sendo definido como o valor esperado das perdas que excedem o VaR calculado para um determinado nível de confiança.

VaR é um quantil alto \(\alpha\) da distribuição de perdas de um ativo ou portfólio em um determinado período de tempo, ao passo que ES é o valor esperado das perdas que excedem VaR, para um mesmo período e nível de confiança \(\alpha\).

O método VaR para cálculo de risco de mercado ao qual um portfólio está sujeito foi primeiramente introduzido através de RiskMetrics (1995), uma metodologia adotada pelo banco J. P. Morgan. Vem desde então sendo amplamente adotado pela indústria financeira e largamente estudado pela academia. Inúmeras variantes do modelo foram propostas e continuam sendo utilizadas com o passar dos anos. Para o cálculo do VaR é necessária uma suposição acerca da distribuição dos retornos, e por conseguinte do comportamento da cauda desta.

As variações na metodologia original de estimação do VaR surgem principalmente em função de críticas a abordagem proposta, a qual inclui a suposição de retornos independentes e igualmente distribuídos, covariâncias constantes entre os ativos de um portfólio e a distribuição normal dos retornos.

Por meio de dois artigos Artzner et al. (1997) e Artzner et al. (1999), foi introduzido na literatura o conceito de medida coerente de risco. Para uma medida ser considerada coerente, primeiramente foram introduzidas quatro propriedades cunhadas através de axiomas, as quais estas medidas deveriam possuir, invariância translacional, sub-aditividade, homogeneidade positiva, e monotonicidade.

VaR especificamente não possui a propriedade da sub-aditividade para alguns casos, sendo esta uma das grandes críticas ao VaR. Desta forma, em casos específicos, é possível uma carteira diversificada em que sejam computados o VaR de cada um de seus ativos, ser agregada e possuir um VaR do portfólio maior que o maior VaR de seus componentes, algo que não condiz com uma medida coerente de risco. Para contornar este fato, Acerbi and Tasche (2002) propuseram o Expected Shortfall e comprovam que este é uma medida coerente de risco. Além de ser coerente, o ES possui uma segunda vantagem com relação ao VaR, considerando que o ES nos informa uma medida de tendência central do tamanho das perdas que excedem o valor do quantil VaR. Ou seja, o VaR nos informa apenas que uma proporção \(\alpha\) das perdas serão menores que a medida, mas nada nos informa se esta perda extraordinária de fato ocorrer. Mesmo sendo criticado como uma medida não coerente de risco, o VaR continua a ser amplamente utilizado, mesmo que agora em conjunto com o ES.

Mais recentemente o Comitê de Supervisão Bancária de Basileia tem se proposto a adotar o Expected Shortfall como medida de risco de mercado. BCBS (2013b). O Comitê cita a grande importância da escolha da medida de risco e sua calibração, e portanto estas são relevantes para as decisões de política do Banco. Entre as dificuldades encontradas pelo VaR estão mais notadamente sua inabilidade em estimar o “risco de cauda” da distribuição de perdas, uma vez que VaR não leva em conta a distribuição das perdas acima do valor de corte.

Desta forma, foi decidido que o ES seria a medida de risco favorita para a abordagem pelo banco chamada de modelos internos. Ou seja, os bancos supervisionados devem utilizar o ES para o cálculo do risco de mercado a que estão sujeitos em seus modelos internos. O comitê também se decidiu por um nível de confiança de 97,5% para o ES, em contraposição a 99% para o VaR. O comitê espera que esta abordagem para o cálculo da medida de risco de mercado trará benefícios se comparada a antiga abordagem pelo Var, entre elas um modelo com resultados mais estáveis e menor sensibilidade a observações extremas (outliers).

Revisão de Literatura

Teoria do valor extremo, é um ramo da estatística que lida diretamente com eventos raros, extremos. Seu objetivo é modelar o comportamento assintótico de eventos que se distanciam muito da mediana de uma distribuição. Justamente por esta característica, a EVT está sendo utilizada para modelar riscos que possuem distribuição com caudas longas, um dos fatos estilizados bem conhecidos sobre retornos de ativos financeiros.

Ao utilizar a EVT, e mais especificamente o método conhecido como peaks over treshold – POT, se está interessado em modelar apenas a parte da cauda da distribuição das perdas de um ativo financeiro maiores que um determinado valor de limiar u. É da modelagem desta cauda, portanto, que se calcula a estimativa de VaR.

A teoria do valor extremo vem sendo utilizada nas finanças a algum tempo. Devido as características das séries financeiras, por exemplo a leptocurtose, a distribuição normal para os retornos vem sendo rechaçada, enquanto outras distribuições mais adequadas assumem o posto para descrever o comportamento das perdas e retornos de séries financeiras. A EVT, ao modelar distribuições com caudas longas, pode ser utilizada para esta finalidade. A introdução da EVT em dois estágios para a estimação de medidas condicionais de risco pode ser atribuída a McNeil and Frey (2000). Neste artigo os autores propuseram um modelo para a estimação do VaR e ES de forma condicional, tanto para período de um dia como para dez dias a frente, de acordo com o normativo de Basileia vigente a época. Seu modelo, que leva em conta as longas caudas e a natureza estocástica da volatilidade, se ajustam de forma mais fidedigna aos dados. Daníelsson and Morimoto (2000) fizeram uma crítica aos modelos condicionais de cálculo do VaR para o mercado japonês e chegaram a conclusão que um modelo EVT incondicional, inclusive sem o estágio de filtragem inicial, era mais adequado para fins práticos.

Byström (2004) encontrou que ambas abordagens da EVT, máximos em bloco como POT, combinadas com análise de séries temporais tradicional (ARIMA e GARCH), no que se configura uma abordagem condicional para a estimação do VaR, têm os melhores resultados tanto em períodos ditos tranquilos como em épocas de alta volatilidade. Voltando a aplicação da EVT para mercados emergentes, Gencay and Selcuk (2004) utilizaram a teoria de valor extremo para o cálculo de VaR e teste de estresse. Seus resultados apontam que a EVT se torna melhor a medida que o quantil utilizado para o cálculo se eleva. Além disso, encontraram que as caudas da distribuição de retornos se comportam de maneira diferente entre ganhos e perdas. Uma comparação entre diversos modelos de previsão de VaR foi realizada por Kuester, Mittnik, and Paolella (2006). Encontraram que a grande maioria dos modelos subestima o risco, mesmo sendo aceitáveis do ponto de vista regulatório, sendo que o modelo condicional GARCH-EVT está entre as melhores estimações.

Karmakar and Shukla (2014) retomam o modelo em dois estágios e fizeram uma comparação entre o modelo EVT condicional e outros modelos já consagrados no cálculo de VaR em 3 mercados desenvolvidos (EUA, Reino Unido e Japão) e 3 mercados emergentes asiáticos (Índia, Hong Kong e Corea do Sul). O modelo GARCH adotado no primeiro estágio é diferente para cada mercado, porém com uma particularidade comum, todos são modelos assimétricos. Novamente encontram que o modelo EVT condicional é superior aos demais através de testes de cobertura incondicional e condicional.

Chavez-Demoulin, Davison, and McNeil (2005) e Herrera and Schipp (2013) tomam um caminho diferente para modelar a EVT. Enquanto o primeiro adota o método de processos pontuais de auto-excitação1, que dadas algumas condições, converge para o método POT, o segundo modela explicitamente as durações de tempo entre as observações de extremos, ou seja, as perdas em excesso ao limiar escolhido. A magnitude destas perdas continua a ser modelada através da distribuição generalizada de Pareto – GPD. Seu modelo é então chamado de autoregressive conditional duration peaks over threshold model – ACD-POT.

Rocco (2014) fez uma grande revisão sobre o uso da EVT em finanças. As principais aplicações encontradas foram o teste de suposições para diferentes distribuições dos dados, cálculo de medidas de risco como o VaR e ES, alocação de ativos sob restrições e otimização de portfólios, e no estudo de contágio e dependência entre mercados sob condições de alto estresse.

Mais recentemente a EVT encontrou outras formas de aplicação e cálculo. Chavez-Demoulin, Embrechts, and Hofert (2016) sugeriram um modelo onde a frequência e a severidade das perdas podem ser modeladas através da EVT com covariantes. Karmakar and Paul (2016) por sua vez, fizeram uma aplicação do modelo EVT condicional a retornos intra-diários de dezesseis mercados diferentes.

O cálculo de VaR em instituições financeiras e bancos comerciais vem sendo implementado e é requerimento do comitê de Basileia. A EVT entra como uma das metodologias utilizadas neste cálculo, Longin (2000) a utilizou e propôs um modelo para agregar o risco de uma posição de mercado, em contraste a modelos univariados apenas. Testes de estresse podem ser realizados através de sua técnica. Utilizando-se de dados reais de seis grandes bancos comerciais americanos, Berkowitz and O’Brien (2002) analisou a precisão de seus modelos VaR. Ele encontrou que os bancos são amplamente conservadores em suas estimativas de VaR, com níveis de cobertura muito acima dos valores nominais. Wong, Cheng, and Wong (2003) promoveu um estudo sobre as implicações da precisão do modelo VaR no gerenciamento do risco de mercado em bancos. Ele adotou os critérios de Basileia para realizar um estudo de backtest e verificou que modelos baseados em previsões de volatilidade através de GARCH não estão de acordo com estes critérios por muitas vezes. Já em um estudo recente, O’Brien and Szerszeń (2017) fez uma avaliação dos modelos de risco de mercado de bancos no pré, durante e pós crise financeira de 2008. Encontrou que tanto no pré quanto no pós crise, os bancos se comportaram de maneira excessivamente conservadora, entretanto, durante a crise financeira as violações ao VaR excederam muito seu valor esperado assim como aconteceram de forma agrupada, um sinal de má especificação nos modelos adotados. O autor comparou estes resultados com um modelo baseado em GARCH e verificou que esta alternativa é muito superior aos atuais modelos.

Conclusão

A avaliação da probabilidade de eventos raros e extremos é uma questão importante no gerenciamento de riscos das carteiras financeiras. A teoria dos valores extremos fornece os fundamentos sólidos necessários para a modelagem estatística de tais eventos e o cálculo de medidas de risco extremo. Não somente a teoria é adequada para este tipo de modelagem, como também é requerido das instituições financeiras que façam suas estimativas de risco de cauda de maneira conservadora mas realista com as atuais condições de mercado. Seja qual for a medida de risco de mercado desejada, VaR ou ES, a EVT através do método POT vem sendo utilizada com excelentes resultados e tem se tornado a prática de mercado.

Em um próximo artigo faremos uso da EVT e outras técnicas de modelagem de VaR para avaliar, através de testes estatísticos, a capacidade preditiva de sete modelos distintos de cálculo da métrica de valor em risco comumente encontrados na literatura, por meio da técnica de backtesting. Os testes aplicados abrangem características importantes do VaR como cobertura incondicional, independência entre violações e superioridade do modelo dada uma função de perda adequada.

Referências

Acerbi, Carlo, and Dirk Tasche. 2002. “On the coherence of expected shortfall.” Journal of Banking & Finance 26 (7). Elsevier: 1487–1503.

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1997. “Thinking Coherently.” RISK 10 (11): 68–71.

———. 1999. “Coherent Measures of Risk.” Mathematical Finance 9 (3): 203–28. doi:10.1111/1467-9965.00068.

BCBS. 2011. “Basel III: A global regulatory framework for more resilient banks and banking systems.” Revised ve. Bank for International Settlements -Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs189.pdf.

———. 2013a. “Basel III: The liquidity coverage ratio and liquidity risk monitoring tools.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs238.pdf.

———. 2013b. “Fundamental review of the trading book: A revised market risk framework.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs265.pdf.

———. 2014. “Basel III: The net stable funding ratio.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/bcbs/publ/d295.pdf.

Berkowitz, Jeremy, and James O’Brien. 2002. “How Accurate Are Value-at-Risk Models at Commercial Banks?” The Journal of Finance 57 (3). Blackwell Publishers, Inc.: 1093–1111. doi:10.1111/1540-6261.00455.

Byström, Hans NE. 2004. “Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory.” International Review of Financial Analysis 13 (2). Elsevier: 133–52.

Chavez-Demoulin, V, A C Davison, and A J McNeil. 2005. “Estimating value-at-risk: a point process approach.” Quantitative Finance 5 (2): 227–34. doi:10.1080/14697680500039613.

Chavez-Demoulin, Valérie, Paul Embrechts, and Marius Hofert. 2016. “An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates.” Journal of Risk and Insurance 83 (3): 735–76. doi:10.1111/jori.12059.

Daníelsson, Jón, and Yuji Morimoto. 2000. “Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market.” Monetary and Economic Studies 2 (18). Institute for Monetary; Economic Studies, Bank of Japan: 25–48.

Gencay, Ramazan, and Faruk Selcuk. 2004. “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets.” International Journal of Forecasting 20 (2). Elsevier: 287–303.

Hawkes, Alan G. 1971. “Spectra of Some Self-Exciting and Mutually Exciting Point Processes.” Biometrika 58 (1): 83–90. doi:10.2307/2334319.

Herrera, Rodrigo, and Bernhard Schipp. 2013. “Value at risk forecasts by extreme value models in a conditional duration framework.” Journal of Empirical Finance 23: 33–47. doi:10.1016/j.jempfin.2013.05.002.

Karmakar, Madhusudan, and Samit Paul. 2016. “Intraday Risk Management in International Stock Markets: A Conditional Evt Approach.” International Review of Financial Analysis 44. Elsevier: 34–55.

Karmakar, Madhusudan, and Girja K. Shukla. 2014. “Managing Extreme Risk in Some Major Stock Markets: An Extreme Value Approach.” International Review of Economics and Finance. doi:https://doi.org/10.1016/j.iref.2014.09.001.

Kuester, Keith, Stefan Mittnik, and Marc S. Paolella. 2006. “Value-at-Risk Prediction: A Comparison of Alternative Strategies.” Journal of Financial Econometrics 4 (1): 53–89. doi:10.1093/jjfinec/nbj002.

Longin, François M. 2000. “From Value at Risk to Stress Testing: The Extreme Value Approach.” Journal of Banking & Finance 24 (7): 1097–1130. doi:https://doi.org/10.1016/S0378-4266(99)00077-1.

McNeil, Alexander J, and Rüdiger Frey. 2000. “Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach.” Journal of Empirical Finance 7 (3-4): 271–300. doi:10.1016/s0927-5398(00)00012-8.

O’Brien, James, and Paweł J. Szerszeń. 2017. “An Evaluation of Bank Measures for Market Risk Before, During and After the Financial Crisis.” Journal of Banking & Finance 80 (Supplement C): 215–34. doi:https://doi.org/10.1016/j.jbankfin.2017.03.002.

RiskMetrics. 1995. “Technical Document – 3rd Edition.” J.P Morgan Guaranty Trust Company.

Rocco, Marco. 2014. “Extreme Value Theory in Finance: a survey.” Journal of Economic Surveys 28 (1). Wiley Online Library: 82–108. doi:10.1111/j.1467-6419.2012.00744.x.

Wong, Michael Chak Sham, Wai Yan Cheng, and Clement Yuk Pang Wong. 2003. “Market Risk Management of Banks: Implications from the Accuracy of Value-at-Risk Forecasts.” Journal of Forecasting 22 (1). Wiley Online Library: 23–33.


  1. Para maiores detalhes sobre processos pontuais de auto-excitação, Hawkes (1971) é a referência original.
Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments