Que a tecnologia está mudando o status quo no mundo, todos já sabemos. O aumento vertiginoso do processamento e armazenamento computacional está causando impactos disruptivos em várias esferas, das mais diversas áreas do conhecimento e da vida. Com todo este potencial tecnológico, alguns conceitos (antigos, porém na “moda”) como inteligência artificial e machine learning estão rondando a cabeça de muitos gestores de negócio mundo afora. No entanto, os robôs já estão dominando os afazeres humanos ou ainda temos tempo de nos adaptar? O objetivo deste post é tentar esclarecer como essas mudanças têm modificado o panorama de negócios no mercado financeiro.
Mas, o que são “dados”?
Os principais ingredientes das técnicas de inteligência artificial e machine learning são os dados – que nada mais são do que informações armazenadas. Podemos controlar informações sobre preços de ações ao longo do tempo, os registros contábeis de uma empresa, flutuações no mercado de commodities, moedas, etc…
Porém, dados sempre foram coletados por boa parte das empresas. Mas o real fator disruptivo está na magnitude em que conseguimos fazer isso hoje. Com alguns dólares, podemos processar terabytes de informação em servidores dedicados na nuvem, algo inimaginável de se pensar numa planilha de Excel, no seu próprio computador. Também, os bancos de dados estão cada vez mais robustos, permitindo que armazenemos cada vez mais informação. Cerca de 90% de toda a informação gerada até hoje no mundo foi gerada nos últimos 2 anos (e que continua crescendo de maneira exponencial).
Então, surge a pergunta:
Mas vem cá, como todo esse poder computacional está mudando o mercado financeiro?
Desde gestoras de ativos e grandes fundos de investimento, até seguradoras. Os líderes mais antenados do mercado já estão tendo “dores de cabeça” sobre como criar vantagens competitivas através da tecnologia. Veja alguns exemplos:
Áreas de grande impacto da tecnologia, hoje, no mercado
- Trading e gestão de portfólios
Duas das áreas mais chamativas do mercado financeiro, por estarem sendo frequentemente retratadas em filmes, documentários, etc… Vemos pessoas de terno berrando ao telefone, inúmeras telas de computador com gráficos sinistros, desespero no rosto de quem colocou aquele zero a mais na ordem de compra/venda, entre outros exemplos. Também, são áreas que contratam toneladas de PhDs em física, matemática e ciência de foguetes.
Traders baseados em estratégias discricionárias (decisão baseada na escolha humana) somam apenas 10% do volume negociado em ações. Fundos quantitativos já somam mais de 60% deste volume, mais do que o dobro de uma década atrás.
Marko Kolanovic, Global Head of Macro Quantitative & Derivatives Strategy do JP Morgan.
Essas informações se baseiam nos volumes negociados nos Estados Unidos. O Brasil ainda está engatinhando nesse processo e com informações inconsistentes sobre a atuação de estratégias sistemáticas na gestão de portfólios.
A aplicação da inteligência artificial no processo de decisão se baseia em modelos quantitativos complexos que buscam capturar, através de observações passadas, sinais de mercado que visam automatizar o processo de decisão, tirando o erro humano do jogo. Os modelos de machine learning e inteligência artificial são cruciais no rebalanceamento e adaptação dos algoritmos à dinâmica (que, aliás, é extremamente dinâmica) de mercado.
- Detecção de fraudes financeiras
Em um relatório da empresa de segurança digital McAfee, foi estimado que fraudes e crimes cibernéticos custam à economia global cerca de U$600 bilhões. Uma boa parcelas desses crimes (e das mais preveníveis) é a de fraudes em cartão de crédito, que vem crescendo de maneira acelerada por conta do aumento das transações online.
Com grandes massas de dados sobre comportamento dos consumidores, os modelos de inteligência artificial e machine learning são muito utilizados para detectar padrões que ferramentas estatísticas tradicionais não conseguiriam detectar.
No Brasil, esta área já é mais desenvolvida em comparação com o segmento de trading e gestão de portfólios, com grandes bancos e financeiras contratando equipes de cientistas de dados para desenvolver modelos de prevenção de crimes cibernéticos.
- Precificação e gestão de seguros
Num negócio que basicamente deriva da gestão de riscos, é necessário mensurar diversas dimensões de probabilidades: probabilidade de um furacão ou incêndio acontecer, de uma pessoa se tornar inadimplente ou perder o emprego, de um eventual problema de saúde aparecer, etc…
Para isso, a imensidão de processamento e armazenamento de dados veio revolucionar o setor das seguradoras. Hoje, a informação é o novo petróleo, e o negócio das seguradoras possui como alicerce a informação.
A partir de uma precificação e gestão mais assertiva a partir de análise de dados, é possível alocar os riscos de uma maneira mais eficiente e cobrar o valor adequado para cada perfil de cliente.
Carreiras e outros assuntos
A inteligência artificial e métodos de machine learning estão gerando valor em outras diversas áreas do mercado financeiro, mas, para não tornar o post muito extenso, podemos deixar este papo para o bar.
Com essa variedade de áreas de assuntos demandando conhecimentos matemáticos e estatísticos, há muitas possibilidades de novas carreiras. Se pensarmos em palavras-chave, há cientistas de dados, engenheiros de machine learning, analistas de dados, estrategistas quant, etc… Boa parte dos profissionais vêm das áreas de engenharia, matemática, física, economia, estatística, entre outros cursos com foco analítico. Boa parte dessas profissões necessitam de um conhecimento vastamente disseminado na internet.
Com isso, o Clube de Finanças está construindo núcleos de estudo (com foco em análise de risco, conjuntura macroeconômica e análise de empresas) que incluem estudos em modelagem matemática e utilização de programação, como R e Python. Com isso, preparamos os nossos membros para estarem aptos a abraçarem as inovações tecnológicas.