Risco

Contratos futuros no agronegócio

Contratos futuros no agronegócio

O primeiro registro sobre derivativos de risco ocorreu cerca de 2500 anos atrás. O famoso filósofo Tales de Mileto usou de seu conhecimento sobre astronomia para prever que a safra de olivas que se aproximava seria boa, e sabendo disso ele propôs aos donos de prensas de oliva da região de alugá-las para ele durante a safra. Os donos de prensa tinham interesse na proposta pois estariam mitigando o risco de passar por uma safra ruim, ou seja, fizeram hedge.

A previsão de Tales de Mileto se concretizou e os produtores de oliva tiveram uma farta colheita. Como o filósofo havia alugado todas as prensas de oliva, logo, passou a ser o formador de preço para o uso das prensas, o que fez com que ele auferisse um bom lucro. Desde então, várias formas de derivativos foram criadas para mitigar o risco. Tendo em vista que boa parte do PIB do Brasil origina-se de commodities, é interessante conhecer como o setor agrário se previne de certos riscos.

Tipos de risco:

Assim como em qualquer outro setor da economia, existem os riscos que permeiam o agronegócio, e alguns deles são comuns a outros setores da economia.

• Risco de crédito: Em determinadas negociações, o comprador pode se tornar inadimplente, ou seja, não é capaz de honrar as obrigações pré-estabelecidas. No caso de um contrato futuro o vendedor corre o risco de crédito. Com o intuito de mitigar esse tipo de risco, instituições como Moody’s e Standard & Poor’s criaram grupos de riscos, também conhecidos como ratings, para que sejam cobrados diferentes níveis de prêmio de risco para cada grau de probabilidade de inadimplência. 

• Risco de Liquidez: O risco de liquidez acontece quando a negociação de determinado ativo não atende ao preço de mercado, ou seja, é oferecido um desconto com o intuito de que ele seja negociado mais rápido. Este tipo de risco pode estar presente também no fluxo de caixa das empresas, pois as mesmas podem não ser capazes de liquidar suas despesas de curto prazo, o que destaca uma deficiência no capital de giro da empresa. 

• Risco de mercado: Mudanças em variáveis de mercado, como taxa de juros, câmbio e outros fatores externos como a política podem interferir tanto no exercício de empresas como na gestão de commodities agrícolas. O câmbio pode causar grande impacto aos produtores tendo em vista que alguns insumos são comprados no mercado internacional e caso o dólar esteja alto, importadores incorrem em custos mais altos. 

• Risco Operacional: Os eventos internos da empresa acarretam em riscos operacionais. Esse tipo de risco é caracterizado principalmente por falhas humanas, problemas tecnológicos e acidentes. Este tipo de risco está diretamente ligado a boa parte do setor agrário.

Além dos riscos citados acima, vale ressaltar que o agronegócio é diretamente dependente do clima, logo, algumas commodities podem ser gravemente afetadas por longos períodos de seca ou também por altos níveis de chuva. 

Agora que o leitor já tem conhecimento de alguns dos riscos que o agronegócio envolve, podemos entrar no foco deste artigo – uma das principais ferramentas usadas para minimizar os riscos – os contratos futuros.

Como funciona um contrato futuro:

Os derivativos são ferramentas financeiras que derivam de um ativo e estabelecem uma relação de compra e venda em uma data futura a um preço pré-estabelecido. Neste processo, uma das partes está passando um risco para outra parte e pagando um prêmio por isso. 

O contrato futuro é um derivativo no qual vendedor e comprador negociam determinado ativo objeto para uma data futura por um preço fixado antecipadamente. Normalmente a liquidação destes contratos são feitos de forma financeira, sendo pouco usual a liquidação com entrega fixa da mercadoria, uma das justificativas para tal medida é o aumento da liquidez. 

O sistema da BM&F Bovespa realiza o ajuste diário das posições, logo, para que isso seja possível sem que os negociantes corram risco de crédito, a BM&F exige uma margem de garantia, que pode ser feita com uso de outros ativos financeiros como FII, ações, CDBs e outros. 

O negociante que possui um contrato de compra ou venda e pretende fechar sua posição precisa comprar outro contrato em sentido oposto, ou seja, se um investidor possui 3 contratos de compra de café arábica com vencimento para dezembro de 2020 e quer fechar sua posição, ele precisa vender 3 contratos futuros de café arábica para vencimento em dezembro de 2020. 

O código de negociação consiste em 3 letras iniciais que indicam qual é o ativo objeto, uma quarta letra que indica o mês de vencimento e 2 números que indicam em qual ano o contrato vence.

O contrato futuro de café arábica com vencimento em dezembro de 2020, por exemplo, tem o seguinte código: ICFZ20.

Os contratos futuros são usados geralmente nas seguintes ocasiões:

Hedge: No caso dos produtores, a fixação de preços garante uma margem de lucro e que todos os custos de produção sejam pagos, já no caso de compradores de commodities, a fixação de preço garante que mesmo que ocorra um aumento, o preço final não será afetado. 

  • Produtores podem vender a produção de uma colheita antes mesmo de plantar, vendendo seu produto no mercado futuro; 
  • Produtores com caixa bem estruturado podem estocar as commodities e esperar para vender no período de entressafra, neste caso o produtor pode fazer a venda de contrato futuro para ter certeza que conseguirá garantir um bom preço;
  • Compradores que esperam a alta no preço de determinado produto podem fazer um hedge comprando contratos futuros;

• Especulação: Os investidores que tem familiaridade com o funcionamento de commodities podem usar os contratos futuros para especular com a alta e baixa dos preços; 

• Ganhos com Spread: Spread é o nome que se dá para quando o investidor obtém lucro com a diferença de preço do contrato do mesmo produto para vencimentos em datas diferentes.

Contratos futuros agrários negociadas na BM&F Bovespa e suas particularidades:

Os contratos futuros, além da margem de garantia obrigatória imposta pela BM&F, têm também outras taxas que devem ser levadas em consideração na hora de negociar, como a TOB (Taxa Operacional Básica), taxa de liquidação, taxa de corretagem da corretora, taxa emolumentos e serviços prestados pela BM&F Bovespa além do imposto de renda.

Exemplos:

• Exemplo 1 – Hedge de compra de milho: Uma empresa do ramo alimentício que tem o milho como insumo, teme a alta de preços em um horizonte de 6 meses, logo, a melhor saída é fazer a compra de contrato futuro de milho. Como a empresa terá necessidade de 4500 sacas de milho, precisa comprar 10 contratos.  

A saca de milho com vencimento para daqui 6 meses está cotada a R$77,00 , logo, a empresa comprará 10 contratos por R$346.500 (4500 sacas por R$77,00 cada)

Supondo que a alta temida pela empresa se concretize e que a saca de milho chegue a R$85 na data de vencimento, os ajustes diários resultarão no seguinte valor:

(−77 + 85) ∗ 4500 = R$ 36.000

Então na data de vencimento do contrato a empresa compra no mercado a vista 4500 sacas por R$85:

85 ∗ 4500 = 𝑅$382.500

Levando em consideração a margem obtida pelo hedge, a empresa chega no valor inicial de R$346.500:

382.000 − 36.000 = 𝑅$346.500

• Exemplo 2 – Hedge de venda de boi gordo: Um criador de boi quer se prevenir da queda no preço da arroba de boi gordo para que ele consiga arcar com todos os custos e não tenha nenhuma surpresa. Tendo em vista que em 3 meses o criador terá 8.250 arrobas de boi gordo, o criador precisa vender cerca de 25 contratos futuros.

Com o contrato de futuro de boi gordo cotado a R$273,00/@, a venda de 25 contrato totaliza R$2.252.250,00. 

Supondo que o preço do contrato futuro caia para R$265,00/@, os ajustes diários resultarão no seguinte valor:

(273 − 265) ∗ 8250 = 𝑅$66.000

Na data de vencimento do contrato, a posição do criador é fechada, a venda dos bois no mercado físico rende para ele:

265 ∗ 8250 = 𝑅$2.186.250

Somando ao valor dos ajustes diários feito pelo criador de gados, volta-se ao valor que cobrirá todos os custos e renderá lucro ao produtor:

2.186.250 + 66.000 = 𝑅$2.252.250,00

Apesar de os exercícios acima não abordarem as taxas de serviços da bolsa de valores e o imposto de renda, o investidor que pretende negociar contratos futuros precisa levá-los em consideração, tendo em vista que as taxas podem diminuir a margem de lucro do negociante.

Conclusão:

Os contratos futuros são uma das principais ferramentas de proteção que o investidor ligado ao agronegócio possui hoje. Como foi apresentado no decorrer do artigo, o uso deles pode garantir que os produtores consigam uma margem de lucro mesmo negociando as commodities em um grande horizonte de tempo.

Referências:

Miceli, W. M. (2017). Derivativos de agronegócios: Gestão de riscos de mercado. São Paulo : Saint Paul Editora. 

Contrato Futuro de Milho na BM&F. Disponível em: <https://br.advfn.com/investimentos/futuros/milho> . Acesso em: 14 de outubro de 2020. 

Contrato Futuro de Café na BM&F. Disponível em: <https://br.advfn.com/investimentos/futuros/cafe> . Acesso em: 14 de outubro de 2020. 

Contrato Futuro de Soja na BM&F. Disponível em: <https://br.advfn.com/investimentos/futuros/soja> . Acesso em: 14 de outubro de 2020.

Contrato Futuro de Boi Gordo na BM&F. Disponível em: <https://br.advfn.com/investimentos/futuros/boi-gordo> . Acesso em: 14 de outubro de 2020. 

Contrato Futuro de Etanol Hidratado na BM&F. Disponível em: <https://br.advfn.com/investimentos/futuros/etanol> . Acesso em: 14 de outubro de 2020. 

CONTRATO FUTURO DE AÇÚCAR CRISTAL COM LIQUIDAÇÃO FINANCEIRA. Disponível em: <http://www.bmf.com.br/bmfbovespa/pages/Contratos1/Agropecuarios/pdf/Contrato-Futuro-de-Acucar-Cristal-Especial.pdf> . Acesso em: 14 de outubro de 2020.

Posted by Nelson Gaudêncio Inácio Ambros in Derivativos & Riscos, 2 comments
Índice Beta

Índice Beta

O que é o Índice Beta?

Um dos indicadores mais utilizados e mais famosos para análise do risco de um portfólio ou de um ativo específico é o Índice Beta. Muito difundido entre os investidores, principalmente os que fazem uma análise fundamentalista, o Beta é utilizado como uma proxy de risco, ele é uma medida de sensibilidade entre por exemplo, uma ação e um Índice como o Ibovespa. Assim, uma vez que sabemos o Beta de diversos ativos, é possível compará-los e descobrir quais ativos são mais agressivos e quais são mais defensivos.

O Beta de uma ação, por exemplo, pode ser definido como o coeficiente angular de uma regressão linear entre os retornos de um índice como o Ibovespa e os retornos de uma ação, permitindo quantificar o grau de variação de uma ação em função da variação do índice Ibovespa. Assim, podemos dizer que o Beta é uma tentativa matemática de replicar o risco não diversificável de uma economia. 

Aplicabilidades do Beta 

Como comentando, o Beta é utilizado como um indicador para medir a sensibilidade de um ativo em relação a um benchmark do mercado. Por exemplo, se uma ação tem um Beta de 1,4, isso significa que se o Índice Ibovespa subir 10%, a ação subirá 14%. Dessa mesma forma, se o Índice Ibovespa cair 10%, espera-se que a ação caia 14%.

Com isso, podemos usar o Beta para analisar a volatilidade e selecionar os ativos que se encaixam no nosso perfil de investidor, em relação à exposição ao risco. Ações com um Beta maior do que 1 são consideradas ativos com mais riscos, pois são mais voláteis do que o mercado como um todo, e ações com um beta menor do que 1 são consideradas ações mais conservadoras, pois elas são menos voláteis do que o mercado como um todo.

Outra aplicabilidade muito importante do Beta é a sua utilização no Capital Asset Pricing Model (CAPM), principal modelo utilizado para calcular o Custo de Equity, muito importante para a elaboração de modelos de Valuation. Basicamente, o modelo CAPM busca encontrar o retorno esperado de um investimento em um ativo que contém risco.

                                                𝐸(𝑅𝑖= 𝑅𝑓 + 𝜷𝒊[𝐸(𝑅𝑚− 𝑅𝑓

Onde na equação, E(ri) representa o retorno esperado, Rf a taxa livre de risco, βi o Beta do ativo, [E(Rm) – Rf] representa o prêmio de risco. A lógica deste modelo consiste na ideia de que ao se investir em um ativo que contém risco o investidor deverá receber uma taxa de juros livre de risco, que seria o retorno obtido ao se investir em um ativo que não contém risco, mais um prêmio pelo o fato de estar se expondo a um risco, e esse prêmio é ponderado por um grau de específico de cada ativo, que neste caso é o Beta do ativo. Assim, segundo o modelo CAPM, ao investir um ativo com um Beta mais elevado, o investidor pode esperar um retorno maior do que uma aplicação com um Beta mais conservador. 

Como se calcula o Beta? 

Uma das formas de se calcular o Beta de uma ação é dividindo a covariância do retorno da ação com o retorno do índice de mercado pela variância do retorno do mercado.

Uma outra forma, mais prática, de se calcular o Beta é através da estimação de uma regressão linear, na qual o Beta seria o coeficiente angular desta regressão. Para o caso do Beta de uma ação, deve ser feito uma regressão linear entre os retornos de um índice e o da ação que está sendo analisada. Assim, será preciso baixar os dados das cotações passadas da ação e do índice Ibovespa. Recomenda-se pegar entre 3 e 5 anos de cotações passadas, e calcular o retorno percentual mensal deste período analisado. O motivo de se utilizar o retorno mensal é que, se a ação analisada for uma Small Cap, ela provavelmente terá uma liquidez muito baixa, podendo ficar vários dias sem ser negociada, o que afetaria o valor do Beta. Para evitar isso, calcula-se o retorno mensal.

Uma vez calculados os retornos do período, basta realizar a regressão: 

No gráfico acima, temos plotados os retornos do Ibovespa e os retornos da ação da Via Varejo (VVAR3), entre outubro de 2015 e setembro de 2020, e temos traçada a reta de regressão, que nos permite chegar na sua equação e consequentemente no Beta.

Observa-se que encontramos um beta de 2,3 para a VVAR3, o que a classifica como uma ação com um Beta alto e, também, como uma ação com alta volatilidade. Este Beta que calculamos agora, através da regressão, é chamado de Beta estatístico. É este Beta que sites como yahoo finance e Investing.com nos fornecem em suas plataformas. Mas o valor deste Beta estatístico sofre com alguns problemas que tornam o seu resultado não tão preciso, que para serem corrigidos é necessário o cálculo de um outro Beta, que faremos mais a frente.

Problemas do Beta estatístico

Como comentado, o Beta estatístico, calculado através de uma regressão, possui alguns problemas. O primeiro destes problemas, que já foi mencionado, é o de uma possível falta de liquidez na ação, que influenciaria nos resultados do Beta. Foi comentado que esse era o motivo de se utilizar variações mensais nos preços para os cálculos, mas esta solução apenas minimiza o problema, não eliminando-o completamente.

Outro problema do Beta estatístico é que o cálculo dele é feito inteiramente utilizando variáveis passadas, e retornos passados não são garantias de retornos futuros.

 Um dos principais problemas do Beta estatístico é decorrente do seu desvio padrão. No nosso caso da VVAR3, o Beta estatístico que calculamos foi de 2,3 e seu desvio padrão é de 0,3, isso significa que o valor do Beta pode ser qualquer número entre 2 e 2,6 o que pode tirar muita confiança do Beta estatístico. Com o objetivo de corrigir ou minimizar estes problemas, foi criado o Bottom-up Beta. 

Bottom-up Beta

Bottom-up Beta consiste na ideia de que o desvio padrão de uma média de Betas será menor do que a média dos desvios padrões de Betas individuais. Assim, deve-se utilizar um Beta setorial para calcular os Betas individuais de cada empresa, pois desse modo os problemas mencionados anteriormente serão minimizados.

Podemos dividir o cálculo do Bottom-up Beta em 3 etapas:

  1. Calcular o Beta estatístico de todas as empresas do mesmo segmento da
    empresa que está sendo analisada e fazer uma média desse Betas,
    ponderados ao valor de mercado de suas respectivas empresas.
  2. Descobrir qual seria o valor desse Beta se não fosse levado em conta
    grau de alavancagem das empresas 
  3. Colocar apenas a alavancagem da empresa que está sendo analisada de
    volta no Beta. 
Para ficar mais claro, vamos aplicar estas 3 etapas para o caso da Via Varejo (VVAR3)

Na tabela acima, temos empresas que atuam no mesmo segmento que a Via Varejo, são elas; Magazine Luiza (MGLU3), B2W (BTOW3), Lojas Americanas (LAME3) e a própria Via Varejo (VVAR3). Também temos os Betas estatísticos, valor de mercado e a relação dívida/equity de cada empresa.

Realizando a primeira etapa do processo, utilizando os valores da tabela, iremos chegar em um Beta do setor da Via Varejo. Porém, este valor ainda precisa ser trabalhado:

𝛽𝑠𝑒𝑡𝑜𝑟 = 1,20

Faz sentindo pensar que, em momentos de instabilidade no mercado, as empresas que estiverem com um grau de alavancagem mais elevado, tendem a ter ações mais voláteis, e essas empresas pode acabar influenciando no cálculo do Bottom-up Beta. Por isso, é preciso tirar o grau de alavancagem das empresas do cálculo. Para fazer isso, deve-se calcular a relação D/E média do segmento e aplicar na fórmula abaixo, onde t é a alíquota de imposto de renda. Para calcular a relação D/E média do segmento, deve ser respeitada a ponderação pelo valor de mercado de cada empresa, da mesma forma que foi feita para o cálculo do 𝛽𝑠𝑒𝑡𝑜𝑟. Assim,
encontramos uma relação D/E médio do segmento de 0,23.

𝛽𝑑 𝑠𝑒𝑡𝑜𝑟 = 1,04

Agora que temos o Beta desalavancado do setor, falta apenas um passo para encontrarmos o Bottom-up Beta. Como comentado, no passo anterior foi removido o grau da alavancagem das empresas do cálculo do nosso Beta, pois não queremos que ele seja influenciado por empresas muito alavancadas, mas o grau da alavancagem da empresa que nós estamos analisado deve ser sim considerado, ele é o único grau de alavancagem que deve influenciar no nosso cálculo, e por isso colocamos ele de volta no cálculo. Para fazer isso, basta utilizar a mesma fórmula que usamos para encontrar o Beta desalavancado do setor, apenas agora iremos utilizar a relação D/E da empresa que estamos analisando.

𝐵𝑜𝑡𝑡𝑜𝑚 − 𝑢𝑝 𝐵𝑒𝑡𝑎𝑣𝑣𝑎𝑟3 = 1,53

Assim, realizando todas as etapas, foi encontrado um Bottom-up Beta para a VVAR3 de 1,53, uma diferença significativa se comparado ao Beta estatístico encontrado através da regressão linear.

Conclusão 

Sendo assim, foi discutido neste artigo os princípios básicos do índice Beta, algumas das possíveis aplicabilidades dele, como calcular ele através de uma regressão linear, os problemas do Beta estatístico e formas de melhorá-lo utilizando o Bottom-up Beta. 

Como discutido, o índice Beta é um indicador extremamente utilizado por sua fácil interpretação e por poder ser aplicado a um portfólio de investimentos, ou para uma ação específica, e, mesmo tendo os seus problemas, ele se mostra uma ferramenta muito útil para investidores.

Referências

Póvoa, Alexandre. Valuation: Como Precificar Ações. 2 ed. São Paulo: Atlas, 2020.

Alexander, Carol. And Sheedy, Elizabeth. The Professional Risk Manager’s Handbook: A Comprehensive Guide to Current Theory and Best Practices. 1 ed. PRMIA Publications, 2005.

Posted by Davi Scherer in Derivativos & Riscos, 4 comments
Fluxo de Caixa em Risco

Fluxo de Caixa em Risco

Na trajetória sobre quantificação de riscos analisa-se também ativos não financeiros, para isso aborda-se, neste artigo, o modelo denominado Cash-Flow-at-Risk (CFAR), um modelo que utiliza a mesma metodologia do Value-at-Risk, mas modificado para mensurar os riscos do setor corporativo.

A definição do CFAR se assimila a do VaR sendo aquele a pior perda nos fluxos de caixa em determinados nível de confiança e período. O horizonte de tempo é selecionado, geralmente, para corresponder a um ciclo de planejamento corporativo.

Para distinção entre os riscos financeiros e corporativos há duas categorias de preços de mercado, as exposições a valor (Value-exposures) e exposições a fluxo de caixa (Cash Flow-Exposures). As exposições a valor refletem ativos como portfólios com taxas de juros fixas, moedas estrangeiras ou estoque de matéria prima, para modelá-las e mensurá-las, utiliza-se o VaR.

Exposições a fluxo de caixa incluem pagamentos fixos e posições nas quais o fluxo de caixa é incerto e não pode ser agregado diretamente a um valor presente. Por exemplo, vendas futuras ou gastos com matérias primas, desde que não seja possível prever, seguramente, as quantidades necessárias. A dependência entre os riscos dos preços e dos gastos de uma companhia podem ser modelados, enquanto mapear as dependências entre preços e vendas é mais desafiador.

Modelando a incerteza

Para modelagem de riscos nas empresas deve-se levar em conta o viés de operação, a incerteza dos fluxos de caixa futuros e a dependência entre as mudanças nos preços do mercado e nos lucros, requerendo, para isso, modelos flexí­veis. Como exemplo, uma mudança na taxa de câmbio pode afetar de maneira significante as vendas de uma empresa exportadora.

Nesse contexto, algumas modificações ao modelo de Value-at-Risk devem ser efetuadas. Como fluxos de caixa são incertos, não se pode determinar um valor presente, portanto, ao invés de analisar apenas o valor presente, será feita a análise baseada em todos os fluxos de caixa e ao invés de olhar apenas para a distribuição de riscos ao fim do horizonte de tempo, simula-se todo o trajeto desse fator de risco durante o período analisado.

Para o processo de simulação, será utilizado o Passeio Aleatório. Passeio Aleatório é um processo aleatório e sua escolha se baseia na ideia de que os fatores de risco, assim como os preços, só mudam quando os participantes do mercado obtêm novas informações. Se e quando as novas informações estiverem disponí­veis dependerá do acaso. Para utilizá-lo poderá ser feita a combinação do processo estocástico (Passeio Aleatório) com uma tendência (componente determinístico).

Ao realizar as simulações é necessário separar dois diferentes pontos de vista. Primeiro, receita e custos da companhia podem ser considerados, isso é a base para o modelo de CFAR. Segundo, o estabelecimento de pedidos e despesas pode ser simulado nas planilhas de balanço, representando o modelo de Earnings-at-Risk.

Como exemplo, a compra de matérias primas resulta e custos imediatos, mas não necessariamente despesas. A matéria prima só cria despesas ao entrar no processo de produção, portanto, nem todo custo culmina, de uma só vez, em despesas contábeis. Observa-se que a diferença entre modelos de fluxo de caixa (CFAR) e de ganhos (EAR) está nas diferentes inputs, sendo a modelagem matemática idêntica.

Independentemente do modelo escolhido, com ajuda de processos estocásticos pode-se simular quantos cenários de evolução de variáveis necessários. Na realização de aproximadamente 10.000 simulações, pode ser construída uma distribuição com intervalos de confiança bicaudal, na qual o intervalo depende da escolha da probabilidade pelo analista.

Mensuração do CFAR

O primeiro passo na mensuração de risco por meio do CFAR é a criação de um Mapa de Exposição, construído de maneira diferente por cada companhia baseado nos riscos enfrentados em seus setores. Nesse mapa, são identificadas todas as dependências entre volume de vendas e preços, seu objetivo é descrever como receita e despesas da companhia mudam de acordo com variações nos preços enfrentados.

A título de exemplo, pode-se analisar fluxos de caixa contratuais, tal como um contrato de venda de bens em moeda estrangeira, como o dólar. Esse contrato pode ser mapeado como uma posição comprada em dólar, com uma exposição econômica (ou exposição de ganhos) igual ao valor nocional do contrato.

O passo seguinte consiste em descrever a distribuição de risco das variáveis chave para a empresa, como preço de commodities, taxas de juros e taxas de câmbio. No exemplo utilizado anteriormente, seria modelada a evolução da taxa de câmbio BRL/USD, a qual pode ser feita por meio de Simulações de Monte Carlo.

Finalmente, as variáveis financeiras modeladas precisam ser atribuí­das às respectivas exposições econômicas, tornando possível a simulação do fluxo de caixa completo. Esta culmina em uma distribuição de ganhos que pode ser analisada de maneira idêntica ao VaR.

Modelando a exposição econômica

Neste tópico será apresentado apenas um modo de analisar os efeitos de variações no mercado em que a empresa está incluída com o intuito de apresentar a noção de modelagem. O gestor deve ter em vista que diferentes fatores podem ser levados em conta, atribuindo maior ou menor complexidade ao modelo, sua elaboração depende dos setores e indicadores aos quais a empresa está exposta, sendo necessária a adequação para cada realidade.

Seguindo o exemplo do exportador deve-se perguntar: como a taxa de câmbio afeta as receitas? Se a companhia compete com firmas nacionais, a apreciação do real afetará todas as exportadoras igualmente e elas podem ser capazes de aumentar os preços em dólar para cobrir seus custos no caso de a demanda pelo produto ser inelástica. Entretanto, se a companhia compete com exportadores estrangeiros, há possibilidade dela não ser capaz de aumentar os preços, culminando em perdas potencialmente grandes. Esses são casos de baixa e alta exposição ao câmbio.

Para generalizar a modelagem, pode-se escrever as receitas como função do preço do produto em moeda estrangeira (P), da quantidade vendida (Q) e da taxa de câmbio (S) expressa em reais. Assume-se que o preço P é estabelecido para manter Q e a elasticidade de P* em relação a S é η (taxa de mudança em P* dado uma mudança em S). Define-se a Elasticidade η como:

Se as quantidades não forem alteradas, pode-se escrever a receita em reais, ao isolar e , e substituí­-los, como:

Considerando que o exportador não tenha poder sobre o mercado, o preço em moeda estrangeira estabelecido pela companhia não pode ser afetado pela taxa de câmbio implicando que η=0. Nesse caso as receitas vão cair na mesma medida que a moeda deprecia em S.

No caso de o preço ser estabelecido em reais, qualquer depreciação do dólar pode ser balanceada por um aumento no preço P*. No caso de uma compensação perfeita η=-1 então os termos se cancelam e as receitas em dólar não são afetadas.

Por fim, num caso intermediário, o exportador pode ser capaz de compensar apenas parcialmente a queda na taxa de câmbio. Por exemplo, se η=-0,5, há necessidade de adequar as simulações de Monte Carlo utilizadas para derivar a distribuição de fluxos de caixa fazendo com que leve em conta o efeito da competitividade.

CFAR Aplicado

Analisando uma fábrica de ferramentas brasileira, que produz martelos e chaves inglesas, que são vendidos em caixas de 100 unidades. Uma caixa de martelos utiliza 50 kg de madeira e 100 kg de aço, enquanto uma caixa de chaves inglesas utiliza 10 kg de alumínio e 25 kg de cobre. O preço de venda de uma caixa de martelos é de US$ 110,00 e uma de chaves inglesas R$ 230,00.

Todas as matérias primas são negociadas em dólar, assim como as mercadorias prontas que são exportadas, além disso, a forte competição do setor não permite que mudanças no preço das matérias primas ou apreciação do câmbio sejam repassadas para os consumidores por meio de aumento de preços.

No dia 28/05/2020, o departamento de vendas da empresa planeja vender mensalmente 1000 caixas de martelos e 500 caixas de chaves inglesas, pelos próximos 12 meses, com variação de até 10%. Portanto, as vendas mensais de martelos serão entre 900 e 1100 caixas, assumindo um desvio padrão de 100, e as vendas de chaves inglesas entre 450 e 550, com desvio padrão de 50.

Primeiramente, monta-se um mapa de exposição, no qual todas as dependências entre volume de vendas e preços são sistematicamente identificadas. Para a companhia analisada, o mapa de exposição é composto por 4 equações e por simplificação assume-se que não há necessidade de estoques. No início de cada mês, as matérias primas são adquiridas e no fim do mês os compradores realizam o pagamento, ou seja, os custos em moeda estrangeira ocorrem no início do mês enquanto as receitas ocorrem no início do mês seguinte. Considerando tempos do transporte, da transferência de fundos e da janela de pagamento, sempre há demora entre o pagamento das matérias primas e venda do produto final, fazendo com que os pagamentos sejam feitos com taxas de câmbio diferentes.

Para ser capaz de lidar com aumentos inesperados no preço das matérias primas, o fluxo de caixa é calculado após subtrair os gastos com estas. Por exemplo, para vendas efetuadas no mês de janeiro, os custos com a matéria prima necessária são subtraí­dos.

Para cada um dos cinco fatores de risco relevantes (preços da madeira, aço, alumínio e cobre e taxa de câmbio BRL/USD) simula-se 10.000 caminhos para os próximos 12 meses (horizonte de planejamento). Estes 10.000 cenários, para os quais são modelados resultados nas mudanças nos fatores de risco com ajuda do mapa de exposição, permitem a simulação de 10.000 fluxos de caixa para o horizonte analisado, permitindo a estimação da distribuição dos fluxos de caixa do ano.

As simulações de Monte Carlo realizadas em R, com evolução baseada no Modelo Browniano Geométrico, foram realizadas utilizando dados da FactSet e agora permitem que sejam simulados os fluxos de caixa de cada um dos meses seguintes ao ponderar pelas quatro equações formadas de acordo com o operacional da empresa:

Agregando as simulações de resultados mensais chega-se à  Distribuição de Resultados Operacionais Anuais, sobre a qual calcula-se um CFAR de R$ 5.080.909,57 com um nível de confiança de 95%, como a distribuição analisada é a distribuição de ganhos, interpreta-se o valor como: o fluxo de caixa com pior desempenho dentre os simulados representa um lucro operacional de R$ 5.080.909,57 reais, com nível de confiança de 95% sobre um período de 12 meses. Já a linha que compreende os 5% melhores resultados da distribuição de ganhos representa um fluxo de caixa de R$ 5.386.815,92.

Por fim, delibera-se que o exemplo utilizado não aborda custos com salários, aluguéis e operação, porém essa abordagem é suscetí­vel à  modelagem das exposições e da operação da empresa, podendo ser aprofundada de acordo com a necessidades do gestor de riscos. O modelo Cash-Flow-at-Risk é o primeiro a abordar de maneira quantificável os riscos enfrentados por instituições não-financeiras e sua utilização tende a aumentar, tornando-se uma maneira eficiente de comparação entre diferentes setores do mercado.

Referências

Jorion, P. 2006. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw-Hill.

Perobelli, F. F., & Securato, J. R. 2005. “Modelo para mediação do fluxo de caixa em risco: aplicação a distribuidoras de energia elétrica.”. Revista de Administração de Empresas

Wiedemann, A., Hager, P., & Roehrl, A. 2003. Integrated Risk Management with Cash-Flow-at-Risk/Earnings-at-Risk methods. RiskNET.

Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Risco de mercado, princípios de Basileia e a teoria do valor extremo

Risco de mercado, princípios de Basileia e a teoria do valor extremo

Neste artigo iniciaremos uma discussão sobre a utilização da teoria do valor extremo – EVT para o cálculo de risco de mercado de ativos financeiros. Desta forma, a EVT pode ser utilizada tanto para o cálculo de VaR quanto ES, recaindo sobre a categoria de modelo semi-paramétrico.

Este será o primeiro artigo de uma série de três. Nesta introdução a EVT, faremos uma vasta revisão da literatura aplicada a finanças. O segundo artigo apresentará ao leitor já familiarizado a modelagem matemática das medias de risco utilizando a EVT e por fim, o último artigo apresentará um estudo de caso, comparando diversos modelos para o cálculo do VaR e inferindo qual modelo é mais adequado com base em critérios bem definidos na literatura. Os artigos foram adaptados de um trabalho de iniciação científica do autor e, portanto, apresentam um caráter mais acadêmico que o normalmente encontrado nos artigos do Clube de Finanças. Ainda assim, o assunto é relevante e atual dentro do gerenciamento de risco das instituições financeiras e desta forma acreditamos que nossos leitores se beneficiarão desta série.

Introdução

A medição do risco de mercado ao qual os portfólios dos investidores está sujeito é objeto de devoção de esforços tanto por parte das instituições e investidores em geral como por parte dos reguladores. Instituições financeiras – IF em todo o mundo, de acordo com suas regulações locais e com os princípios de Basileia ( Basel Comittee on Banking Supervision – BCBS do Banco de Compensações Internacionais – BIS) são obrigadas a reservar uma parcela de seu capital como provisionamento contra flutuações adversas do mercado, como forma de mitigar seu risco de insolvência.

Estas instituições devem manter seu risco de insolvência controlado, e a percepção externa deve ser tal que não haja desconfiança do público com sua habilidade em controlar este risco. Se a confiança na instituição se esvai e a percepção de risco é elevada, rapidamente uma crise de liquidez pode surgir, com depositantes sacando seus recursos ao mesmo tempo em que outras fontes de funding também se tornam escassas. Em tal situação, é natural o banco ou IF, ir ao mercado para vender seus ativos e levantar os recursos necessários. Neste momento uma crise de liquidez no mercado pode levar a uma possível insolvência da IF pois, não há garantias que no mercado aberto, os ativos do banco serão justamente avaliados e arrematados.

Uma importante característica das séries de retornos financeiros é sua alta volatilidade, não constante e tampouco seguindo uma distribuição Normal. Assim, eventos extremos, e neste caso estamos interessados em perdas de grande magnitude, acontecem com uma frequência alta demais para serem descartadas como apenas outliers, e portanto passaram a atrair a atenção dos participantes do mercado, entre eles os investidores e reguladores. Estas observações induziram uma gama de estudos, empíricos e teóricos, voltados a explicar o comportamento dos retornos de séries financeiras e modelar de forma adequada as caudas da distribuição destes retornos. Não somente estes estudos são de grande relevância para o gerenciamento de risco nas instituições financeiras, como também são obrigatórios segundo o acordo de Basileia, uma vez que este requer o cálculo do Valor em Risco – VaR, para então a instituição poder projetar o seu nível requerido de capital.

De acordo com os princípios de Basileia III, BCBS (2011), BCBS (2013a), BCBS (2014), as instituições financeiras supervisionadas pelos Bancos Centrais devem manter buffers de capital contra riscos de mercado, crédito, liquidez, entre outros. Dentro dos riscos de mercado, as duas formas mais usuais de fazer a quantificação destes são os métodos de Valor em Risco – VaR e o Expected Shortfall – ES. Este último relacionado ao primeiro, sendo definido como o valor esperado das perdas que excedem o VaR calculado para um determinado nível de confiança.

VaR é um quantil alto \(\alpha\) da distribuição de perdas de um ativo ou portfólio em um determinado período de tempo, ao passo que ES é o valor esperado das perdas que excedem VaR, para um mesmo período e nível de confiança \(\alpha\).

O método VaR para cálculo de risco de mercado ao qual um portfólio está sujeito foi primeiramente introduzido através de RiskMetrics (1995), uma metodologia adotada pelo banco J. P. Morgan. Vem desde então sendo amplamente adotado pela indústria financeira e largamente estudado pela academia. Inúmeras variantes do modelo foram propostas e continuam sendo utilizadas com o passar dos anos. Para o cálculo do VaR é necessária uma suposição acerca da distribuição dos retornos, e por conseguinte do comportamento da cauda desta.

As variações na metodologia original de estimação do VaR surgem principalmente em função de críticas a abordagem proposta, a qual inclui a suposição de retornos independentes e igualmente distribuídos, covariâncias constantes entre os ativos de um portfólio e a distribuição normal dos retornos.

Por meio de dois artigos Artzner et al. (1997) e Artzner et al. (1999), foi introduzido na literatura o conceito de medida coerente de risco. Para uma medida ser considerada coerente, primeiramente foram introduzidas quatro propriedades cunhadas através de axiomas, as quais estas medidas deveriam possuir, invariância translacional, sub-aditividade, homogeneidade positiva, e monotonicidade.

VaR especificamente não possui a propriedade da sub-aditividade para alguns casos, sendo esta uma das grandes críticas ao VaR. Desta forma, em casos específicos, é possível uma carteira diversificada em que sejam computados o VaR de cada um de seus ativos, ser agregada e possuir um VaR do portfólio maior que o maior VaR de seus componentes, algo que não condiz com uma medida coerente de risco. Para contornar este fato, Acerbi and Tasche (2002) propuseram o Expected Shortfall e comprovam que este é uma medida coerente de risco. Além de ser coerente, o ES possui uma segunda vantagem com relação ao VaR, considerando que o ES nos informa uma medida de tendência central do tamanho das perdas que excedem o valor do quantil VaR. Ou seja, o VaR nos informa apenas que uma proporção \(\alpha\) das perdas serão menores que a medida, mas nada nos informa se esta perda extraordinária de fato ocorrer. Mesmo sendo criticado como uma medida não coerente de risco, o VaR continua a ser amplamente utilizado, mesmo que agora em conjunto com o ES.

Mais recentemente o Comitê de Supervisão Bancária de Basileia tem se proposto a adotar o Expected Shortfall como medida de risco de mercado. BCBS (2013b). O Comitê cita a grande importância da escolha da medida de risco e sua calibração, e portanto estas são relevantes para as decisões de política do Banco. Entre as dificuldades encontradas pelo VaR estão mais notadamente sua inabilidade em estimar o “risco de cauda” da distribuição de perdas, uma vez que VaR não leva em conta a distribuição das perdas acima do valor de corte.

Desta forma, foi decidido que o ES seria a medida de risco favorita para a abordagem pelo banco chamada de modelos internos. Ou seja, os bancos supervisionados devem utilizar o ES para o cálculo do risco de mercado a que estão sujeitos em seus modelos internos. O comitê também se decidiu por um nível de confiança de 97,5% para o ES, em contraposição a 99% para o VaR. O comitê espera que esta abordagem para o cálculo da medida de risco de mercado trará benefícios se comparada a antiga abordagem pelo Var, entre elas um modelo com resultados mais estáveis e menor sensibilidade a observações extremas (outliers).

Revisão de Literatura

Teoria do valor extremo, é um ramo da estatística que lida diretamente com eventos raros, extremos. Seu objetivo é modelar o comportamento assintótico de eventos que se distanciam muito da mediana de uma distribuição. Justamente por esta característica, a EVT está sendo utilizada para modelar riscos que possuem distribuição com caudas longas, um dos fatos estilizados bem conhecidos sobre retornos de ativos financeiros.

Ao utilizar a EVT, e mais especificamente o método conhecido como peaks over treshold – POT, se está interessado em modelar apenas a parte da cauda da distribuição das perdas de um ativo financeiro maiores que um determinado valor de limiar u. É da modelagem desta cauda, portanto, que se calcula a estimativa de VaR.

A teoria do valor extremo vem sendo utilizada nas finanças a algum tempo. Devido as características das séries financeiras, por exemplo a leptocurtose, a distribuição normal para os retornos vem sendo rechaçada, enquanto outras distribuições mais adequadas assumem o posto para descrever o comportamento das perdas e retornos de séries financeiras. A EVT, ao modelar distribuições com caudas longas, pode ser utilizada para esta finalidade. A introdução da EVT em dois estágios para a estimação de medidas condicionais de risco pode ser atribuída a McNeil and Frey (2000). Neste artigo os autores propuseram um modelo para a estimação do VaR e ES de forma condicional, tanto para período de um dia como para dez dias a frente, de acordo com o normativo de Basileia vigente a época. Seu modelo, que leva em conta as longas caudas e a natureza estocástica da volatilidade, se ajustam de forma mais fidedigna aos dados. Daníelsson and Morimoto (2000) fizeram uma crítica aos modelos condicionais de cálculo do VaR para o mercado japonês e chegaram a conclusão que um modelo EVT incondicional, inclusive sem o estágio de filtragem inicial, era mais adequado para fins práticos.

Byström (2004) encontrou que ambas abordagens da EVT, máximos em bloco como POT, combinadas com análise de séries temporais tradicional (ARIMA e GARCH), no que se configura uma abordagem condicional para a estimação do VaR, têm os melhores resultados tanto em períodos ditos tranquilos como em épocas de alta volatilidade. Voltando a aplicação da EVT para mercados emergentes, Gencay and Selcuk (2004) utilizaram a teoria de valor extremo para o cálculo de VaR e teste de estresse. Seus resultados apontam que a EVT se torna melhor a medida que o quantil utilizado para o cálculo se eleva. Além disso, encontraram que as caudas da distribuição de retornos se comportam de maneira diferente entre ganhos e perdas. Uma comparação entre diversos modelos de previsão de VaR foi realizada por Kuester, Mittnik, and Paolella (2006). Encontraram que a grande maioria dos modelos subestima o risco, mesmo sendo aceitáveis do ponto de vista regulatório, sendo que o modelo condicional GARCH-EVT está entre as melhores estimações.

Karmakar and Shukla (2014) retomam o modelo em dois estágios e fizeram uma comparação entre o modelo EVT condicional e outros modelos já consagrados no cálculo de VaR em 3 mercados desenvolvidos (EUA, Reino Unido e Japão) e 3 mercados emergentes asiáticos (Índia, Hong Kong e Corea do Sul). O modelo GARCH adotado no primeiro estágio é diferente para cada mercado, porém com uma particularidade comum, todos são modelos assimétricos. Novamente encontram que o modelo EVT condicional é superior aos demais através de testes de cobertura incondicional e condicional.

Chavez-Demoulin, Davison, and McNeil (2005) e Herrera and Schipp (2013) tomam um caminho diferente para modelar a EVT. Enquanto o primeiro adota o método de processos pontuais de auto-excitação1, que dadas algumas condições, converge para o método POT, o segundo modela explicitamente as durações de tempo entre as observações de extremos, ou seja, as perdas em excesso ao limiar escolhido. A magnitude destas perdas continua a ser modelada através da distribuição generalizada de Pareto – GPD. Seu modelo é então chamado de autoregressive conditional duration peaks over threshold model – ACD-POT.

Rocco (2014) fez uma grande revisão sobre o uso da EVT em finanças. As principais aplicações encontradas foram o teste de suposições para diferentes distribuições dos dados, cálculo de medidas de risco como o VaR e ES, alocação de ativos sob restrições e otimização de portfólios, e no estudo de contágio e dependência entre mercados sob condições de alto estresse.

Mais recentemente a EVT encontrou outras formas de aplicação e cálculo. Chavez-Demoulin, Embrechts, and Hofert (2016) sugeriram um modelo onde a frequência e a severidade das perdas podem ser modeladas através da EVT com covariantes. Karmakar and Paul (2016) por sua vez, fizeram uma aplicação do modelo EVT condicional a retornos intra-diários de dezesseis mercados diferentes.

O cálculo de VaR em instituições financeiras e bancos comerciais vem sendo implementado e é requerimento do comitê de Basileia. A EVT entra como uma das metodologias utilizadas neste cálculo, Longin (2000) a utilizou e propôs um modelo para agregar o risco de uma posição de mercado, em contraste a modelos univariados apenas. Testes de estresse podem ser realizados através de sua técnica. Utilizando-se de dados reais de seis grandes bancos comerciais americanos, Berkowitz and O’Brien (2002) analisou a precisão de seus modelos VaR. Ele encontrou que os bancos são amplamente conservadores em suas estimativas de VaR, com níveis de cobertura muito acima dos valores nominais. Wong, Cheng, and Wong (2003) promoveu um estudo sobre as implicações da precisão do modelo VaR no gerenciamento do risco de mercado em bancos. Ele adotou os critérios de Basileia para realizar um estudo de backtest e verificou que modelos baseados em previsões de volatilidade através de GARCH não estão de acordo com estes critérios por muitas vezes. Já em um estudo recente, O’Brien and Szerszeń (2017) fez uma avaliação dos modelos de risco de mercado de bancos no pré, durante e pós crise financeira de 2008. Encontrou que tanto no pré quanto no pós crise, os bancos se comportaram de maneira excessivamente conservadora, entretanto, durante a crise financeira as violações ao VaR excederam muito seu valor esperado assim como aconteceram de forma agrupada, um sinal de má especificação nos modelos adotados. O autor comparou estes resultados com um modelo baseado em GARCH e verificou que esta alternativa é muito superior aos atuais modelos.

Conclusão

A avaliação da probabilidade de eventos raros e extremos é uma questão importante no gerenciamento de riscos das carteiras financeiras. A teoria dos valores extremos fornece os fundamentos sólidos necessários para a modelagem estatística de tais eventos e o cálculo de medidas de risco extremo. Não somente a teoria é adequada para este tipo de modelagem, como também é requerido das instituições financeiras que façam suas estimativas de risco de cauda de maneira conservadora mas realista com as atuais condições de mercado. Seja qual for a medida de risco de mercado desejada, VaR ou ES, a EVT através do método POT vem sendo utilizada com excelentes resultados e tem se tornado a prática de mercado.

Em um próximo artigo faremos uso da EVT e outras técnicas de modelagem de VaR para avaliar, através de testes estatísticos, a capacidade preditiva de sete modelos distintos de cálculo da métrica de valor em risco comumente encontrados na literatura, por meio da técnica de backtesting. Os testes aplicados abrangem características importantes do VaR como cobertura incondicional, independência entre violações e superioridade do modelo dada uma função de perda adequada.

Referências

Acerbi, Carlo, and Dirk Tasche. 2002. “On the coherence of expected shortfall.” Journal of Banking & Finance 26 (7). Elsevier: 1487–1503.

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1997. “Thinking Coherently.” RISK 10 (11): 68–71.

———. 1999. “Coherent Measures of Risk.” Mathematical Finance 9 (3): 203–28. doi:10.1111/1467-9965.00068.

BCBS. 2011. “Basel III: A global regulatory framework for more resilient banks and banking systems.” Revised ve. Bank for International Settlements -Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs189.pdf.

———. 2013a. “Basel III: The liquidity coverage ratio and liquidity risk monitoring tools.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs238.pdf.

———. 2013b. “Fundamental review of the trading book: A revised market risk framework.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs265.pdf.

———. 2014. “Basel III: The net stable funding ratio.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/bcbs/publ/d295.pdf.

Berkowitz, Jeremy, and James O’Brien. 2002. “How Accurate Are Value-at-Risk Models at Commercial Banks?” The Journal of Finance 57 (3). Blackwell Publishers, Inc.: 1093–1111. doi:10.1111/1540-6261.00455.

Byström, Hans NE. 2004. “Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory.” International Review of Financial Analysis 13 (2). Elsevier: 133–52.

Chavez-Demoulin, V, A C Davison, and A J McNeil. 2005. “Estimating value-at-risk: a point process approach.” Quantitative Finance 5 (2): 227–34. doi:10.1080/14697680500039613.

Chavez-Demoulin, Valérie, Paul Embrechts, and Marius Hofert. 2016. “An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates.” Journal of Risk and Insurance 83 (3): 735–76. doi:10.1111/jori.12059.

Daníelsson, Jón, and Yuji Morimoto. 2000. “Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market.” Monetary and Economic Studies 2 (18). Institute for Monetary; Economic Studies, Bank of Japan: 25–48.

Gencay, Ramazan, and Faruk Selcuk. 2004. “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets.” International Journal of Forecasting 20 (2). Elsevier: 287–303.

Hawkes, Alan G. 1971. “Spectra of Some Self-Exciting and Mutually Exciting Point Processes.” Biometrika 58 (1): 83–90. doi:10.2307/2334319.

Herrera, Rodrigo, and Bernhard Schipp. 2013. “Value at risk forecasts by extreme value models in a conditional duration framework.” Journal of Empirical Finance 23: 33–47. doi:10.1016/j.jempfin.2013.05.002.

Karmakar, Madhusudan, and Samit Paul. 2016. “Intraday Risk Management in International Stock Markets: A Conditional Evt Approach.” International Review of Financial Analysis 44. Elsevier: 34–55.

Karmakar, Madhusudan, and Girja K. Shukla. 2014. “Managing Extreme Risk in Some Major Stock Markets: An Extreme Value Approach.” International Review of Economics and Finance. doi:https://doi.org/10.1016/j.iref.2014.09.001.

Kuester, Keith, Stefan Mittnik, and Marc S. Paolella. 2006. “Value-at-Risk Prediction: A Comparison of Alternative Strategies.” Journal of Financial Econometrics 4 (1): 53–89. doi:10.1093/jjfinec/nbj002.

Longin, François M. 2000. “From Value at Risk to Stress Testing: The Extreme Value Approach.” Journal of Banking & Finance 24 (7): 1097–1130. doi:https://doi.org/10.1016/S0378-4266(99)00077-1.

McNeil, Alexander J, and Rüdiger Frey. 2000. “Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach.” Journal of Empirical Finance 7 (3-4): 271–300. doi:10.1016/s0927-5398(00)00012-8.

O’Brien, James, and Paweł J. Szerszeń. 2017. “An Evaluation of Bank Measures for Market Risk Before, During and After the Financial Crisis.” Journal of Banking & Finance 80 (Supplement C): 215–34. doi:https://doi.org/10.1016/j.jbankfin.2017.03.002.

RiskMetrics. 1995. “Technical Document – 3rd Edition.” J.P Morgan Guaranty Trust Company.

Rocco, Marco. 2014. “Extreme Value Theory in Finance: a survey.” Journal of Economic Surveys 28 (1). Wiley Online Library: 82–108. doi:10.1111/j.1467-6419.2012.00744.x.

Wong, Michael Chak Sham, Wai Yan Cheng, and Clement Yuk Pang Wong. 2003. “Market Risk Management of Banks: Implications from the Accuracy of Value-at-Risk Forecasts.” Journal of Forecasting 22 (1). Wiley Online Library: 23–33.


  1. Para maiores detalhes sobre processos pontuais de auto-excitação, Hawkes (1971) é a referência original.
Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments
Expected Shortfall

Expected Shortfall

Expected Shortfall como substituto ao VaR

No artigo anterior foi apresentada a medida de risco conhecida como Value-At-Risk (VaR), nele foram abordados origem, conceito, técnicas de estimação e suas deficiências.

Para lidar com as deficiências que o VaR apresenta, Artzner et al. (1999) introduziram uma nova medida de risco denominada como Expected Shortfall (ES). Durante o decorrer deste artigo, esta medida de risco será apresentada e contextualizada com o VaR além de explorado o porquê do ES ser uma medida que apresenta melhores propriedades.

Alguns pontos a serem levados em conta sobre problemas no mundo real que podem levar o uso do ES ser superior ao do VaR:

  1. Investidores racionais que maximizam seus portfólios podem ser enganados pelo uso do VaR. É provável que construam posições com fragilidades não intencionais e podem resultar em perdas superiores ao VaR.
  2. O VaR não é confiável sob estresse de mercado, sob flutuações extremas de preços de ativos ou sob estrutura de dependência extrema de ativos. Nesses casos, VaR pode subestimar o risco.

Além dos pontos citados acima o ES é uma alternativa ao VaR por ser mais sensível ao formato da cauda de distribuição das perdas e é considerado uma medida de risco coerente por respeitar os quatro axiomas propostos por Artzner.

No artigo sobre Value-at-Risk são abordadas as quatro propriedades que medidas de risco coerentes devem apresentar, sendo elas: Monotonicidade, Homogeneidade, Invariância por Translações e Subaditividade. O VaR satisfaz as três primeiras, contudo não é sempre que ele satisfaz a Subaditividade.

O conceito de subaditividade diz que a soma de dois elementos irá sempre retornar algo menor ou igual à soma dos valores da função de cada elemento e é satisfeita através da fórmula abaixo:

\[ ES(\alpha_1 + \alpha_2, α) = ES(\alpha_1, α) + ES(\alpha_2, α) \]

Esta fórmula demonstra que o ES incorpora os benefícios da diversificação uma vez que o risco total do portfólio é igual ou menor que a soma dos risco dos componentes.

O que é Expected Shortfall?

O Expected Shortfall (ES) é uma medida de risco que produz benefícios adicionais ao Value At Risk (VaR), podendo ser referida como Conditional Value At Risk (CVaR), Average Value At Risk (AVaR) ou Expected Tail Loss (ETL).

Como definição, o Expected Shortfall se conceitua como uma medida de risco quantitativa e responde a seguinte pergunta: qual é a perda média, sabendo que a perda está acima do VaR? E também: se as coisas ficarem ruins, qual é a perda esperada?

Assim como o VaR, o ES apresenta dois parâmetros de cálculo, o horizonte de tempo (T) e o nível de confiança (\(\alpha\)). Sendo representado pela perda esperada durante o período (T), sabendo que a perda está condicionada a ser maior que o \(\alpha\)-ésimo Percentil da distribuição de perdas.

Como exemplo, supondo que o VaR é de 1 milhão de reais e que o nível de confiança (\(\alpha\)) é de 99, horizonte de tempo (T) é 1 dia. Então, o ES é a quantia média perdida em um período de 1 dia, sabendo que a perda será superior a R$ 1 milhão.

A figura abaixo, exemplificada em Yamai and Yoshiba (2005), ilustra os conceitos do próprio ES e também do VaR:

Figura 1: VaR e Expected Shortfall

Técnicas de estimação

Os valores do ES são derivados do cálculo do próprio VaR, as premissas do VaR como a forma de distribuição dos retornos, a periodicidade dos dados, a volatilidade estocástica, o corte utilizado, todos afetarão o valor do ES.

Pode-se definir o ES com um nível de confiança \(\alpha\) para uma distribuição de perdas \(L\) como a esperança das perdas acima do VAR:

\[ ES (L) = E[L | L\geq Var_\alpha(L)] \]

Essa estimação, assim como o VaR, pode ser feita de forma paramétrica ou não-paramétrica.

Método não-paramétrico

A forma histórica, ou não-paramétrica (por não depender de parâmetros e sim de amostras), é calculada a partir do VaR histórico com \(N\) observações, atribuindo um peso \(1/n\) para cada uma das n observações acima do VaR:

\[ ES_\alpha(L) = (\sum_{i=N-n}^NLi)/(n) \]

Métodos Paramétricos

Para modelos paramétricos, supomos uma distribuição a que irá depender de certos parâmetros que serão estimados. Dessa forma podemos definir o ES em termos contínuos como uma integral no intervalo \([1 – α; 1]\):

\[ ES =\frac{1}{1-\alpha}\int_{\alpha}^{1}(\Phi^{-1}(1-u)\sigma + \mu)du \] \[ ES = \frac{1}{1-\alpha}\int_\alpha^1 VaR_u(L)du \] Alguns dos modelos mais comuns para se estimar o ES pelos métodos paramétricos são a distribuição Normal (Gaussiana) e a distribuição t-Student. Algumas variações um pouco mais sofisticados são as distribuições da família johnson e a distribuição t não-central.

Assumindo uma distribuição Normal, podemos resolver a integral substituindo a função quantil da Normal padrão \(\Phi^{-1}\) ajustada para os parâmetros da distribuição \(L\), conforme derivação feita por Smaga (2016) :

\[ ES_\alpha =\sigma \frac{\varphi(\Phi^{-1}(\alpha))}{1-\alpha}-\mu \]

Com \(\varphi\) sendo a função de densidade de probabilidade e \(\Phi^{-1}\) a função quantil da Normal padrão (\(N \sim (0;1)\)).

Como simplificação podemos assumir que: \[ ES_{\alpha} =ƛσ − μ \]

Onde \(ƛ\):

\[ ƛ(α) = \frac{\varphi(\Phi^{-1}(α))}{1 − α} \]

Qual método utilizar?

Questões podem ser levantadas sobre a efetividade de cada método. A primeira vista o histórico pode parecer uma boa escolha devido à disponibilidade de dados no mercado financeiro e o aparente melhor ajustamento aos fatos reais. Enquanto isso pode ser verdadeiro se comparado com a estimação por meio da Normal, a distribuição t (e suas variações) pode se mostrar útil para o caso de termos poucas observações ou se quisermos intuir sobre a cauda da distribuição utilizando todo o conjunto de observações. Outra possibilidade seria utilizar estimadores de máxima verossimilhança para estimar os parâmetros da distribuição utilizada, garantindo uma estimativa mais conservadora nos métodos paramétricos, assim como descrito em Martin and Zhang (2017).

Assim como no VaR, além desses dois métodos podemos usar a simulação de Monte Carlo para gerar as observações e proceder assim como no método histórico.

O que é o comitê de Basileia e como ele vem tratando as medidas de risco?

O Comitê de Supervisão Bancária de Basileia é uma organização constituída por representantes de autoridades de supervisão bancária que promove a discussão sobre o aperfeiçoamento das práticas de supervisão bancária, buscando melhorar as ferramentas de fiscalização internacionalmente, e visa o fortalecimento da solidez dos sistemas financeiros.

Em 1988, o comitê estabeleceu o acordo de Basileia I que teve como objetivo criar exigências mínimas de capital, a qual devem ser respeitadas por bancos comerciais, para precaução contra o risco de crédito.

O Basileia I determinou três regras principais para que houvesse o funcionamento:

– Índice Mínimo de Capital: Determina que o banco deve deixar, pelo menos, 8% de capital em caixa de seus empréstimos.

– Capital Regulatório: Determina que a instituição deva deixar um mínimo de capital próprio em caixa para mitigar riscos.

– Avaliação de Risco: Obriga a todas instituições a avaliarem os riscos de financiamento e empréstimo.

Mesmo com todas as exigências e regras impostas pelo comitê isso não impediu inúmeras falências de instituições financeiras. Em 2004, o comitê lançou um novo acordo denominado Basileia II que teve como objetivo reforçar as medidas propostas pelo primeiro acordo e também deu mais liberdade aos bancos centrais de cada país.

Os três pilares trazidos com o segundo acordo são os seguintes:

1. Critérios para o cálculo dos requerimentos mínimos de capital (riscos de crédito, mercado e operacional);

2. Princípios de supervisão para a revisão de processos internos de avaliação da adequação de capital, de forma a incentivar a aplicação, pelos próprios supervisionados, de melhores práticas de gerenciamento de riscos por meio do seu monitoramento e mitigação.

3. Incentivo à disciplina de mercado por meio de requerimentos de divulgação ampla de informações relacionadas aos riscos assumidos pelas instituições.

Após a crise dos subprimes, observou-se que o acordo anterior era insuficiente, por consequência, surgiu o acordo de Basileia III que é um conjunto de propostas de reforma da regulamentação bancária. O acordo aumentou a regulamentação sobre o sistema financeiro e elevou os limites exigidos para bancos e instituições financeiras.

As principais inovações provenientes deste terceiro acordo foram o aperfeiçoamento dos fatores para ponderação de ativos pelo risco, introdução dos colchões de capital para conservação e contracíclico e novos requerimentos para de liquidez e alavancagem.

Desvantagens do ES

Back-Testing

Realizar o Back-test de uma métrica significa calcular quão bem a medida calculada funcionaria no passado. Supondo uma métrica de cálculo de VaR diário com um nível de confiança \(\alpha\), o back-test consiste em analisar com qual frequência as perdas excedem o VaR diário, cada dia que excede o valor é chamado de exceção. Se as exceções acontecem em aproximadamente (100-\(\alpha\))% das vezes a metodologia usada é relativamente precisa, se ocorrem em mais do que (100-\(\alpha\))% das vezes o VaR está possivelmente subestimado, enquanto se ocorrerem em menos vezes está superestimado.

Essa checagem é uma das razões pelas quais os reguladores têm sido relutantes em trocar o VaR pelo ES na quantificação de risco de mercado, dado pelo fato de ser um procedimento muito mais difícil de realizar para o ES, o que é explicado pela maioria dos métodos de back-testing para ES necessitarem de informações da distribuição de retornos de cada dia, ou pelo menos da distribuição das caudas além do VaR.

Monte Carlo e erros de estimação

Estimativas de Value-at-Risk e Expected Shortfall são afetadas por erros de estimação, os quais representam a variabilidade natural causada por amostras de tamanho limitado. As Simulações de Monte Carlo, que são tipicamente utilizadas em processos os quais não podem ser previstos facilmente devido à intervenção de variáveis aleatórias, variam na estimativa do VaR de acordo com sua aleatoriedade.

Yamai, Yoshiba, and others (2002) observa que em distribuições de perda com caudas longas, o desvio padrão relativo ao ES fica muito maior que aquele relativo ao VaR, enquanto que ao analisar distribuições aproximadamente normais, os desvios padrões relativos são praticamente iguais.

Tal fato é explicado pela probabilidade de perdas grandes e não frequentes em distribuições de caudas longas ser alta, tendo em vista que o ES estimado é afetado por elas. Já o VaR é pouco afetado por essas perdas por negligenciar as perdas além do quantil selecionado.

Ademais, é possível analisar que o aumento no tamanho das amostras é capaz de reduzir o erro da estimação do ES, sendo necessário, para uma distribuição estável de coeficiente de estabilidade igual a 1,5 (quando o coeficiente é 2 a distribuição é normal, sendo que menores valores significam caudas maiores), amostras com centenas de milhares de observações para obter-se o mesmo nível de desvio padrão que aquele relativo ao VaR. Isso faz com que Simulações de Monte Carlo tomem proporções muito grandes, necessitando de poder computacional ainda maior.

Exemplo prático:

A rotina abaixo, elaborada no R, exemplifica a estimação do Expected Shortfall para um portfólio univariado.

library(readr)
library(tidyverse)
library(forcats)
library(ggthemes)
library(PerformanceAnalytics)

Como primeiro passo, instalamos os pacotes acima para importação (readr), manipulação dos dados (tidyverse, forcats), visualização (ggthemes) e para cálculo de indicadores de portfólios (PerformanceAnalytics).

X_GSPC <- read_csv("D:/Programacao/riscoderivativos/static/input/^GSPC.csv")
View(X_GSPC)

sp500 <- as_tibble(X_GSPC)

colnames(sp500) <- c("data", "abertura", "maximo", "minimo", "fechamento","fechamento_adj", "volume") 

Após instalação dos pacotes, deve-se importar os dados do portfólio, nesse caso, univariado. Na rotina referida, foi utilizada uma série do índice S&P500 entre agosto de 2009 e agosto de 2019, com cotação de abertura e fechamento diária.

fechamento <- sp500$fechamento

sp500$variacao2 <- Return.calculate(xts(fechamento,order.by = as.Date(sp500$data))
                                    ,method = "simple")

Returns <- sp500$variacao2

sp500 %>% ggplot(aes(x=variacao2))+ 
  geom_histogram()+ 
  theme_minimal()

Com os dados importados, calcula-se a variação diária do índice através da função “Return.calculate”. A variação também pode ser calculada através do índice em t (\(P_{t}\)) sobre o índice em t-1 (\(P_{t-1}\)), como segue:

\[ \Delta P = \frac{P_{t}}{P_{t-1}}-1 \]

VaR(R = Returns,p = .95,method = "historical")

VaR95 <- VaR(R = Returns,p = .95,method = "historical")

ES(R = Returns,p = .95,method = "historical",)

ES95 <- ES(R = Returns,p = .95,method = "historical",)

Com a variação diária já calculada, tanto o VaR quanto o Expected Shortfall podem ser calculados para intervalos de confiança diferentes. Na função VaR e ES do pacote “PerformanceAnalytics”, o p (nível de confiança) pode ser definido em ambas as funções, assim como o método de estimação, o qual pode ser histórico, gaussiano/normal e modificado (“historical”, “gaussian” e “modified”).

# ES e VaR através de diferentes métodos (paramétricos e não paramétricos)

dfretornos <- data.frame(Returns)

chart.VaRSensitivity(xts(dfretornos,order.by = as.Date(sp500$data)),
                     methods = c("GaussianVaR","HistoricalVaR", "GaussianES", "HistoricalES"), 
                     elementcolor = "darkgrey")

Para elucidar os diferentes métodos de estimação do VaR e ES, o pacote “PerformanceAnalytics” permite gerar o gráfico abaixo, onde no eixo “X” encontra-se o nível de confiança e no eixo “Y” os valores do VaR e ES.


Figura 2: Comparação entre medidas de risco

Referências

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1999. “Coherent Measures of Risk.” Mathematical Finance 9 (3): 203–28.

Martin, R Douglas, and Shengyu Zhang. 2017. “Nonparametric Versus Parametric Expected Shortfall.” Available at SSRN 2747179.

Yamai, Yasuhiro, and Toshinao Yoshiba. 2005. “Value-at-Risk Versus Expected Shortfall: A Practical Perspective.” Journal of Banking & Finance 29 (4): 997–1015.

Yamai, Yasuhiro, Toshinao Yoshiba, and others. 2002. “Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization.” Monetary and Economic Studies 20 (1): 87–121.

Contribuíram como co-autores deste artigo os analistas do núcleo de derivativos e risco Vinícius Custódio, João Pedro Smielevski Gomes e Thiago Ranzolin Barreto.

Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Valor em Risco

Valor em Risco

História do VaR

O termo “Valor em Risco” derivado do inglês Value at Risk (VaR), foi introduzido no vocabulário financeiro apenas no começo dos anos 1990, apesar de suas medidas terem sido originadas muito antes.

Seu início mais provável retrocede à Bolsa de Valores de Nova York (NYSE), por volta de 1922, na qual, inicialmente, uma regra exigia que as firmas mantivessem um capital de 10% de seus ativos composto por posições de capital próprio e contas a receber de clientes. Em 1975, a Comissão de Títulos e Câmbio dos Estados unidos (SEC) estabeleceu novas regras para o capital das firmas, cujo objetivo era proteção contra perdas que poderiam ocorrer durante o período existente na liquidação de posições. Esse sistema dividiu ativos financeiros em várias categorias e subcategorias, para evitar posições muito concentradas em um único ativo.

A volatilidade nos juros americanos levou a SEC a atualizar as regras em 1980, as quais passaram a ser baseadas em análise estatística de dados históricos do mercado. Sua intenção era refletir o .95-quantil da quantidade de dinheiro que uma firma poderia perder em um período de liquidação de um mês. Apesar de não ter sido nomeado na época, essa era uma medida de valor em risco.

Em meados de 1990, muitas firmas careciam de maneiras de gerenciar o risco, foi quando a J.P Morgan desenvolveu um sistema de valor em risco em toda a empresa, modelando inúmeros fatores-chave. Uma matriz de covariância era atualizada trimestralmente com dados históricos e todos os dias as unidades de negociação reportavam a variação de suas posições de acordo com cada fator-chave. Esses dados eram agregados e expressavam o valor do portfólio como um polinômio linear dos fatores de risco, utilizando várias métricas de VaR para analisá-lo.

De 1990 em diante, a pedido do CEO da J.P. Morgan, um dado único de valor em risco deveria ser colocado nos demonstrativos de resultado em um relatório diário para as reuniões de tesouraria às 16:15, representando o risco que seria enfrentado no dia seguinte.

A partir de 1994, a metodologia desenvolvida na J.P Morgan, denominada RiskMetrics foi distribuída sem custo na internet, aumentando o interesse das firmas e investidores no gerenciamento de risco e possibilitando o aprimoramento das métricas de valor em risco.

Como podemos definir o Valor em Risco?

Em sua definição formal, o VaR de um portfólio é uma função com dois parâmetros: o horizonte de tempo (T) e o nível de confiança (X). Ele representa o nível de perda que temos X% de confiança que não vai ser excedido em um período T, podendo ser calculado tanto pela distribuição de probabilidades dos ganhos quanto pela distribuição de probabilidades das perdas.

Como exemplo, ao utilizar T representando três dias e X=90, o Valor em Risco é a perda no décimo percentil da distribuição de ganhos esperados dos próximos três dias. Da mesma forma, é a perda no nonagésimo percentil da distribuição de perdas dos próximos três dias. Genericamente, quando utilizada a distribuição de ganhos, o VaR é igual ao negativo dos ganhos no (100-X)-ésimo percentil da distribuição, como demonstrado na ilustração:

Figura 1: Distribuição de ganhos

Analogamente, quando utilizada a distribuição de perdas, o VaR é igual às perdas no X-ésimo percentil da distribuição:

Figura 2: Distribuição de perdas

Técnicas de estimação do VaR

Definimos o VaR de uma carteira sobre o horizonte T, com nível de confiança X, \(0< X <1\), por meio de:

\[ X=P(\Delta P(T)\leq VaR)=F^{T}(VaR), \]

na qual \(\Delta P(T)\), representa o ganho da posição sobre o horizonte T, e \(F^{T}(\cdot)\) a função de distribuição de ganhos acumulada de \(\Delta P(T)\).

Neste caso, podemos fazer algumas considerações: utilizando a distribuição de ganhos, o (100-X)-quantil de uma posição comprada será tipicamente um número negativo, tendo em vista que há perda no caso de uma queda no preço do ativo, ou seja, \(\Delta P(T)<0\), portanto o VaR é definido como o negativo desse quantil, e será sempre um valor positivo. Este método utiliza a cauda esquerda da distribuição de ganhos para níveis de confiança maiores que 50%.

VaR utilizando o Método Paramétrico

A estimação do VaR utilizando métodos paramétricos, abordada em Morettin (2008), pressupõe que os retornos de um portfólio seguem distribuições de probabilidades, uma dessas técnicas é conhecida como RiskMetrics, a qual supõe que a distribuição condicional dos retornos, dadas as informações passadas, é normal com média zero e variância \(\sigma _{t}^{2}\), ou seja, \[ \mathit{r}_{t}|\mathit{F}_{t-1}\sim \mathit{N}(0,\sigma_{t}^{2}). \] Neste caso, estimamos a volatilidade \(\sigma_{t}^{2}\) por meio do modelo EWMA (Média Móvel Exponencialmente Ponderada), o qual demonstra \[ \sigma^{2}_t=\lambda\sigma^{2}_{t-1}+(1-\lambda)r^{2}_{t-1}, \] onde \(0< \lambda<1\), e utilizando os log-retornos de \(k\) períodos, dados por \[ r_{t}[k]=r_{t+1}+r_{t+2}+…+r_{t+k}. \] A partir disso, \(\sigma_{t}^{2}[k]\), a volatilidade desse retorno, pode ser calculada por meio da modelagem GARCH, que mostra que \[ \sigma _{t}^{2}[k]=k\sigma _{t}^{2}(1). \]

Isto é, podemos escrever que \[ r_{t}[k]|\mathit{F}_{t-1}\sim \mathit{N}(0,k\sigma _{t}^{2}(1)). \] Portanto, sob os modelos adotados, a variância condicional dos log-retornos de \(k\) períodos é proporcional ao horizonte \(k\) e o desvio padrão condicional de \(r_{t}(k)\) é dado por \(\sqrt{k}\sigma_{t+1}\).

Por exemplo, utilizando uma posição comprada e um nível de confiança X=95, o RiskMetrics usa \(-1,65\sigma_{t+1}\) como VaR, representando o 0,05-quantil da distribuição normal com média zero e variância \(\sigma_{t}^{2}\), obtemos

\[ \mathit{-VaR=} \text{(Valor da Posição)}\times(-1,65)\times (\sigma _{t+1}), \]

representando a medida de um período. O VaR de \(k\) períodos é dado por: \[ \mathit{-VaR=} (Valor da Posição)\times(-1,65)\times\sqrt{k}\times (\sigma _{t+1}). \]

VaR utilizando o método de Variância e Covariância

Da mesma forma que a estimação anterior, o método de variância e covariância assume que a distribuição de retornos do portfólio pode ser aproximada por uma normal. Esse método pode ser definido por \[ VaR(a_{1},a_{2},…,a_{n},X)=-\mu +z_{X}\sigma, \] no qual, \(a_{n}\) representa a participação do ativo \(n\) na carteira, \(\mu\) representa a média dos retornos ponderada pela alocação de cada ativo, ou seja, o retorno esperado, e \(z_{X}\) representa o \(X\) quantil da distribuição normal conjunta, dado que são vários ativos. As quais podem ser calculadas por \[ \mu =\sum_{i=1}^{n}a_{i}m_{i} \] e \[ \sigma ^{2}=\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}a_{j}\sigma _{i,j}, \] nas quais, \(m_{i}\) representa o retorno esperado de cada ativo e \(\sigma_{i,j}\) representa a covariância entre os ativos “i” e “j”.

VaR utilizando o Método Não-Paramétrico ou Simulação Histórica

O método dos quantis empíricos, consiste em reunir dados históricos do portfólio, montando uma distribuição com os retornos através do tempo e, de acordo com a distribuição obtida, selecionar a perda a qual é maior apenas que os (100-X)% retornos históricos. Este é um método não-paramétrico, ou seja, não requer que a distribuição seja caracterizada por parâmetros, sendo útil em casos de dados resistentes à transformações e não normais, além disso, sua vantagem é a adequação às distribuições assimétricas.

VaR utilizando a Simulação de Monte Carlo

Simulações de Monte Carlo são tipicamente utilizadas em processos os quais não podem ser previstos facilmente devido à intervenção de variáveis aleatórias. Uma maneira de utilizá-lo é modelando possíveis movimentos nos preços de um ativo em softwares como o Excel.

Para realizar tal simulação deve-se primeiro estipular um modelo para a evolução dos preços dos ativos. Um dos modelos conhecidos é o Movimento Browniano Geométrico, no qual primeiro observa-se que existem dois componentes no movimento dos preços de um ativo: deriva \((\mu)\), que é um movimento direcional constante, e um componente aleatório \((\alpha)\), representando a volatilidade do ativo. Além disso, obtemos a deriva e o desvio padrão baseando-se em seu histórico, por meio de um processo chamado de calibração do modelo.

Para tanto, projeta-se a trajetória de um ativo, utilizando os dados históricos de seu preço para gerar uma série de retornos diários, usando o logaritmo natural: \[ \text{Retorno Diário}=ln(\frac{\text{Preço do dia}}{ \text {Preço do dia anterior}}). \] Em seguida, calculamos a média de retornos diários \((\bar{r})\), a variância \((\sigma^{2})\), o desvio padrão \((\sigma)\) e obtemos a deriva e a componente aleatória por meio de: \[ \mu=\bar{r}-\frac{\sigma^{2}}{2} \] e \[ \alpha=\sigma\times(\text{Valor aleatório}). \] Sendo \((\text{Valor aleatório})\sim N^{-1}(0,1)\), podemos obter o preço do dia seguinte por meio de: \[ \text{Preço do Dia Seguinte}=(\text{Preço do dia})\times e^{(\mu+\alpha)} \] Ao repetir esse cálculo quantas vezes necessário (cada repetição representando um dia), obtemos uma simulação do movimento futuro do preço. Ao gerar um número grande de simulações, pode-se encontrar a probabilidade associada ao preço que o ativo pode atingir em determinado horizonte de tempo.

A frequência dos diferentes retornos gerados por essa simulação formarão uma distribuição normal, assim como o primeiro método apresentado.

Deficiências do VaR

Em sua essência o VaR consegue responder a uma única pergunta “o quanto as perdas podem ser ruins?”. Porém, apesar do VaR proporcionar ao investidor o potencial de perda de um portfólio, ele acaba tendo muitas críticas por conta de suas deficiências.

Inicialmente, pode-se observar que o VaR é inconclusivo para perdas maiores que as especificadas pelo determinado nível de confiança, ou seja, não possuímos informações suficientes para analisar um caso extremo que supere a probabilidade estipulada. Isso é dado pelo fato dessa métrica não utilizar uma relação entre as maiores perdas, e sim escolher o valor da perda no (100-X)-quantil. Tal problema é observado no caso abaixo:

Figura 3: Distribuição de retornos assimétrica

Assim como inúmeras métricas utilizadas nas finanças, o VaR depende das componentes utilizadas na estimação, estando exposto a deficiências nesse processo, por exemplo, no caso de um ativo cuja distribuição de retornos seja assimétrica ou com maior achatamento, ao utilizar o método da variância e covariância, assume-se que a distribuição de retornos segue a normal, ocasionando em uma análise errônea. Além disso, a existência de diferentes métodos para se calcular o VaR de um portfólio faz com que para cada cálculo haja um resultado diferente para o risco.

Por fim, analisando as quatro propriedades de medidas coerentes de risco, observadas em Hull (2012):

Monotonicidade: se um portfólio produz um resultado pior que outro portfólio por qualquer razão, sua medida de risco deve ser maior;

Invariância por translação: se uma quantidade K de capital é adicionada a um portfólio, sua medida de risco deve cair K;

Homogeneidade: mudar o tamanho do portfólio por um fator \(\lambda\) enquanto mantêm-se as quantidades relativas dos ativos, a medida de risco deve ser multiplicada por \(\lambda\);

Subaditividade: a medida de risco de dois portfólios quando é feita sua fusão não deve ser maior que a soma de suas medidas de risco antes da fusão.

Observa-se que, apesar de sempre satisfazer as três primeiras propriedades, há casos nos quais o VaR não satisfaz a quarta, tornando-o uma medida não coerente de risco.

Vantagens

Em meio a essa série de desvantagens o VaR se sustenta como uma das principais ferramentas na análise de riscos. Isso pode ser explicado dado sua capacidade de admitir a comparação de valores, que são expressos em unidade monetárias. Assim sendo, permite a comparação entre ativos de diferentes áreas do mercado. Além disso, sua larga utilização permite a comparação de riscos entre vários âmbitos tais como comparação de portfólios e entre diferentes setores.

Vantagens e Desvantagens de cada método

Método Paramétrico:

Por ser um método simples, requer pouca força computacional, mas sua simplicidade custa na confiabilidade da estimativa, que é limitada pelo uso da distribuição normal, não funciona bem para ativos que tenham retornos não lineares e pode subestimar o VaR em altos níveis de confiança e o sobrestimá-lo em baixos níveis.

Método Não-Paramétrico:

O método de simulação histórica é fácil de ser implementado. Os dados referentes ao cálculo geralmente apresentam-se em domínio público e não são necessários softwares complexos para se realizar o cálculo, de maneira que planilhas de cálculo simples são eficientes. A simulação histórica também não leva em conta suposições em relação a distribuição dos retornos e elimina a necessidade de se utilizar a matriz de covariância e outros parâmetros. Apesar disso, o método supõe que a distribuição de retornos do ativo se manterá a mesma, o que pode não ser razoável, e requer bases de dados sobre o preço do ativo, as quais nem sempre apresentam o tamanho suficiente.

Método de Monte Carlo:

O método de Monte Carlo é capaz de calcular de maneira eficiente o VaR devido ao uso de simulações não-lineares e de parâmetros, à possibilidade de adequá-la a diferentes distribuições estatísticas e ao fato de não ser tão afetada por eventos extremos. Apesar disso, é o mais complicado dentre os métodos apresentados, custando mais tempo para ser desenvolvido e necessitando grande capacidade de processamento de dados.

Referências

Hull, John. 2012. Risk Management and Financial Institutions,+ Web Site. Vol. 733. John Wiley & Sons.

Morettin, Pedro Alberto. 2008. “Econometria Financeira: Um Curso Em Séries Temporais Financeiras.”

Contribuiu como co-autor deste artigo o analista do núcleo de derivativos e risco Vinícius Custódio. LinkedIn

Posted by Arthur Vier in Derivativos & Riscos, 0 comments