quant

Métodos de calibração de superfícies de volatilidade

Métodos de calibração de superfícies de volatilidade

2019/02/08

Métodos de calibração são as diferentes formas existentes entre “interpolação”, “suavização” e “parametrização” que podem ser utilizadas para fazer o ajustes dos dados obtidos do mercado de opções às superfícies de volatilidade.

Como já apresentado em artigos anteriores, existem diversas formas de interpolar, extrapolar, parametrizar e calibrar smiles de volatilidade. Existem vantagens e desvantagens para cada método.

Calibração versus Interpolação

Uma forma simples de gerar um smile de volatilidade a partir de dados observados no mercado é a interpolação destes dados. Diversas formas de interpolação existem, sendo talvez a mais conhecida a spline cúbica. Não é a proposta deste artigo detalhar os procedimentos de interpolação, restando saber que em tal procedimento é gerada uma função contínua em partes (piecewise) que passa por todos os pontos observados.

Uma interpolação força a passagem da função interpolada em todos os seus pontos de referência, como se estivesse ligando estes pontos em um desenho a mão livre. Portanto, nestes pontos o erro da interpolação é zero por definição, entretanto em pontos intermediários podem surgir erros, inclusive aqueles que possibilitam a existência de arbitragem entre strikes de um mesmo smile1.

Em contraposição a métodos de interpolação, podem ser derivados métodos de suavização (smoothing) ou então a parametrização do smile de volatilidade. Seja suavização, ou parametrização, estes métodos não forçam a passagem da função que representa o smile pelos pontos de mercado, mas buscam minimizar alguma função perda dos desvios em relação a estes pontos ao mesmo tempo em que buscam “suavizar” o smile, para que este não apresente variações bruscas entre os strikes ou alterações de convexidade na curva de preços, que não são condizentes com a teoria de precificação de derivativos.

Um método paramétrico, como o SVI, Heston ou SABR, busca ajustar às volatilidades implícitas observadas através dos preços das opções sendo praticados no mercado a uma determinada função, que possui parâmetros em sua definição que por sua vez determinam a forma desta. Ao se ajustar os parâmetros, pode-se adequar a função para ficar “o mais próxima possível” dos dados observados, sem necessariamente, no entanto, passar por todos estes pontos.

A figura abaixo tenta mostrar as diferenças entre uma interpolação spline cúbica, uma suavização e uma parametrização SVI. Enquanto que a interpolação liga todos os pontos marcados, a suavização e a parametrização não necessariamente passam sobre estes mas fornecem uma curva mais “suave”, sem trocas de convexidade, o que geraria oportunidades de arbitragem e probabilidades negativas de ocorrência de determinados preços para o ativo subjacente, que ferem os princípios de precificação de opções. Os dados utilizados neste e nos próximos artigos sobre superfícies de volatilidade foram obtidos do site ivolatility.com na forma de amostra gratuita fornecida livremente. O ativo subjacente é o ETF IWM para a data de 21/09/2017.

Diferentes métodos de ajuste de dados a um smile.

Figura 1: Diferentes métodos de ajuste de dados a um smile.

Pode-se verificar como os métodos SVI e a suavização não passam sobre todos os pontos marcados, com a suavização tendo dificuldade com a curvatura nos valores mais altos de moneyness e a SVI possuindo uma inclinação mais branda na asa esquerda do smile.

Spline cúbica

Este método é possivelmente um dos mais flexíveis e conhecidos de interpolação de dados univariados existente, embora também exista sua versão bi-dimensional. Uma spline nada mais é que “uma curva definida matematicamente por dois ou mais pontos de controle”2.

No caso da spline cúbica, esta é uma função polinomial de grau 3 definida em cada subintervalo demarcados pelos pontos de controle, no caso de interpolação são todos nós. Ou seja, considere um segmento entre dois pontos consecutivos \([c, d]\in S\) a spline é uma função cúbica com seus parâmetros calculados pelo algoritmo de ajuste. Para o próximo intervalo de pontos dentro do domínio da função, um novo polinômio de grau 3 é ajustado, sendo que nos pontos de nós uma restrição de igualdade entre as derivadas nos dois segmentos é aplicada para garantir a suavidade da função interpolada como um todo.

Assim, uma spline cúbica é uma função contínua, suave e diferenciável até a segunda ordem. Entretanto, suas derivadas, apesar de contínuas, podem não ser suaves, especialmente aquela de segunda ordem que pode apresentar pontos de “ruptura”. Esta característica de uma spline cúbica a torna pouco atrativa para a inferência de distribuições de probabilidade a partir de dados de volatilidade ou mesmo dos preços de opções.

Cada segmento de uma spline cúbica é um polinômio de grau 3 diferente.

Figura 2: Cada segmento de uma spline cúbica é um polinômio de grau 3 diferente.

Suavização

A técnica de suavização é muito semelhante a interpolação, inclusive o método spline também é aplicado, com algumas modificações de forma que nem todos os pontos fornecidos serão nós.

Na spline de suavização (ou aproximação), os pontos fornecidos são separados entre os nós, onde a função deve passar e pontos de controle, que são utilizados para controlar a curvatura da função nestes pontos.

Estas suavizações são principalmente utilizadas quando se possui muitas observações sujeitas a ruídos, de forma que uma interpolação entre todos os pontos seria tanto impraticável quanto sem sentido. O que se deseja, portanto, é uma função aproximada que melhor descreva o processo sob análise.

Um ponto em comum entre estas técnicas é o parâmetro de suavização, ausente, na interpolação, que controla a “suavidade” da função estimada.

Menor parâmetro de suavização gera granularidade na curva.

Figura 3: Menor parâmetro de suavização gera granularidade na curva.

Parametrização

E por fim as técnicas de parametrização. Nesta categoria estão diversos conhecidos modelos de superfícies de volatilidade implícita, dentre eles os modelos de Heston (1993) e SVI de Gatheral (2004).

Em comum, estes modelos tentam parametrizar a superfície, e por conseguinte o smile de volatilidade, de acordo com alguma função, em geral não-linear, que possui características condizentes com a teoria de precificão de derivativos e também a observação empírica das superfícies.

Por exemplo, a parametrização raw da SVI possui a seguinte forma para a variância total3 :

\[ w(k) = a + b\left(\rho(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right)\]

que fornece um espaço de cinco parâmetros \(\chi_B=\{a, b, \rho, m, \sigma\}\) que definem o smile e devem, portanto, serem calibrados a partir de dados observados no mercado.

O procedimento de calibração consiste em encontrar o conjunto de parâmetros que minimizam uma função perda entre a volatilidade prevista pelo modelo e os dados de mercado, enquanto satisfazem algumas restrições adicionais, como “ausência de arbitragem”, suavidade, etc. Trata-se, via de regra, de problemas de otimização não-linear com restrições de inequalidade também não-lineares.

Função perda

A função perda, ou função de calibração pode ser definida de diversas maneiras, de forma geral, para uma determinada maturidade, ela toma a forma:

\[L=\sum\limits_{i=1}^n\lambda_i||\hat w(k_i)-w_{imp}(k_i)||\] onde \(||\cdot||\) é alguma medida de norma, sendo a mais conhecida o quadrado das diferenças, dando origem a minimização do erro quadrático médio (MSE). Para o presente smile sendo calibrado existem \(n\) strikes (\(k_i\)) e suas volatilidades implícitas observadas são \(w_{imp}(k_i)\). A resposta do modelo para um determinado strike é \(\hat w(k_i)\) e \(\lambda_i\) são os pesos dados na função perda para cada um destes strikes.

Os pesos \(\lambda_i\) são utilizados para ponderar as observações das volatilidades mais importantes para o cálculo, onde se deseja que a curva ajustada possua um menor erro. Em geral, estes pesos são calculado como inversamente proporcionais:

  • ao quadrado dos spreads bid-ask, para dar mais importância às opções mais líquidas
  • ao quadrado da grega vega calculada a partir do modelo BSM

Otimizadores

Os otimizadores são os algoritmos pelos quais o problema de minimização posto é resolvido. Se a função perda é convexa, e ela deve ser construída de forma a ser, mesmo que não estritamente, então ela possui um ou mais pontos de mínimo onde o gradiente desta função é igual a zero. O que os otimizadores fazem é buscar o conjunto de parâmetros que minimizam a função perda e atendem as restrições impostas simultaneamente. Os otimizadores podem ser classificados em dois grandes grupos, globais e locais.

Algoritmos locais dependem de uma estimativa inicial dos parâmetros para começarem a busca pelo mínimo. Seguindo uma regra utilizando-se o gradiente da função ou alguma heurística, estes otimizadores caminham em direção ao ponto de mínimo mais próximo da estimativa inicial, daí o nome “local”. Como desvantagem destes otimizadores é a mais evidente é que se a função perda for altamente não-linear, com diversos pontos de mínimo local, este otimizador pode ficar preso em um destes pontos sem nunca, no entanto, encontrar o mínimo global. Eles são, portanto muito sensíveis à estimativa inicial dos parâmetros.

Por sua vez, otimizadores globais buscam mapear todo o espaço factível para os parâmetros e encontrar o ponto mínimo da função perda dentro deste espaço. Estes algoritmos não dependem de estimativas iniciais, uma vez que tentarão avaliar o espaço completo. São utilizados quando o problema de minimização é não-linear e possui múltiplos pontos de mínimo local. Estes algoritmos usam alguma forma de heurística para encontrar a região onde o mínimo global está localizado, mas são, em geral, ineficientes em apontar rapidamente onde este ponto de mínimo se encontra com precisão. Por esta razão, é frequente a utilização de otimizadores globais com um posterior refinamento de sua solução por algum algoritmo local.

Abaixo apresentamos alguns exemplos mais comuns de otimizadores, tanto locais quanto globais:

  • Gauss-Newton: Este método é utilizado para encontrar as raízes de alguma função. Para encontrar o ponto de mínimo da função perda, precisa-se encontrar as raízes do gradiente desta função, portanto o método de Newton em otimização faz uso da função gradiente. Este é um método de otimização local.

  • Levenberg-Marquardt: Método muito utilizado para problemas não-lineares, ele parte de uma modificação ao método de Gauss-Newton ao introduzir um fator de amortecimento calculado iterativamente.

  • L-BFGS-B: BFGS é um método conhecido como quasi-Newton, onde não é necessário calcular a Hessiana do problema, ela é aproximada a partir do próprio gradiente. É bastante utilizado para resolver problemas não-lineares e em sua versão L-BFGS-B pode lidar com restrições do tipo box, intervalo dos parâmetros é fixo.

  • Nelder-Mead: Este é um método livre do uso de gradiente, já que usa uma heurística para construir um simplex e a partir deste “procurar” por um mínimo. Bastante utilizado quando a função objetivo pode não ser diferenciável. Faz uso de um simplex inicial, que pode ser grande o suficiente para encampar o mínimo global, entretanto, não se classifica como um otimizador global.

  • Algoritmo Genético: Este método utiliza conceitos da seleção natural para gerar os resultados da otimização. É um otimizador global, no sentido que independe de uma estimativa inicial de parâmetros e faz uma busca por todo o espaço factível. Em um algoritmo genético, uma população aleatória inicial de parâmetros é criada e a partir desta, as gerações evoluem conforme mutações e cross-over de características e é avaliado o fitness de cada conjunto de parâmetros até um deles ser considerado adequado.

  • Evolução Diferencial: É um método de otimização global, assim como o Algoritmo Genético e o Enxame de Partículas. Sua diferença reside no fato de que sua população inicial é constantemente avaliada e deslocada de posição. Se o agente obtiver uma situação melhor (menor valor para a função perda) na nova posição, esta agora faz parte da população. Desta forma os agentes, antes espalhados pelo espaço factível dos parâmetros, tendem a convergir para um ponto com o menor valor da função perda.

  • Enxame de Partículas: Do inglês, Particle Swarm Optimization – PSO este método é semelhante ao DE (Differential Evolution) porém as partículas (o equivalente dos agentes no DE) matém informações sobre a posição da melhor partícula até então, de forma a fazer com que as partículas tendam para a melhor solução.

Conclusão

Dependendo do objetivo da aplicação, superfícies de volatilidade podem ser interpoladas, suavizadas ou parametrizadas. A parametrização tem recebido especial interesse pois pode, ao mesmo tempo que garante uma superfície livre de arbitragem estática se devidamente construída, ajustar-se muito bem aos dados observados e gerar distribuições neutras ao risco implícitas factíveis.

Para gerar uma superfície parametrizada, primeiramente é necessário um modelo teórico com propriedades desejáveis e que se ajuste aos dados de mercado quando calibrado. Escolhido este modelo paramétrico, passa-se a calibração do mesmo onde existem diversas opções de escolha entre otimizadores. Ao final do processo teremos um modelo de superfície devidamente parametrizado com valores que melhor se ajustam segundo alguma função perda escolhida.

Com a superfície de volatilidade calibrada, as aplicações possíveis incluem a precificação de derivativos, gerenciamento de risco, simulações de Monte Carlo, análises de stress, entre outras.

Referências

Gatheral, Jim. 2004. “A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation of Volatility Derivatives.” Presentation at Global Derivatives & Risk Management, Madrid.

Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies 6 (2). Oxford University Press: 327–43.

  • Veja mais detalhes no artigo anterior: Smile de volatilidade – parte 2
  • Definição retirada de https://pt.wikipedia.org/wiki/Spline
  • A variância total é o produto entre a variância implícita e o tempo para expiração, (w=\sigma^2_{imp}\cdot\tau).
  • Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments
    Smile de Volatilidade parte 2

    Smile de Volatilidade parte 2

    2019/01/25

    Daremos continuidade ao artigo anterior sobre o smile de volatilidade. Falaremos sobre a estrutura a termo da volatilidade implícita, agregando uma segunda dimensão ao smile e transformando-o na famigerada superfície de volatilidade implícita. Também será definida o que é a arbitragem estática e seus tipos e como a limitação da presença de arbitragem estática impõe restrições na superfície de volatilidade. Por fim, será demonstrado como, a partir de um smile de volatilidade é possível derivar a distribuição implícita neutra ao risco do subjacente para data de expiração das opções.

    Estrutura a termo

    O mercado precifica a volatilidade implícita de forma que esta dependa também do tempo até expiração, bem como do preço de exercício.

    A volatilidade implícita tende a ser uma função crescente da maturidade quando as volatilidades de curto prazo são historicamente baixas e função decrescente da maturidade quando as volatilidades de curto prazo são historicamente altas. Isso porque existe uma expectativa de reversão a uma média de longo prazo embutida na volatilidade. Esta característica é explorada explicitamente por alguns modelos de volatilidade, como em Heston (1993).

    As superfícies de volatilidade combinam smiles com a estrutura a termo de volatilidade para tabular valores apropriados para precificar uma opção com qualquer preço de exercício e prazo de expiração.

    Da mesma forma como a curva de juros em um dado momento é uma descrição concisa dos preços dos títulos negociados naquele mercado, assim, para um ativo subjacente em particular em determinado momento, a superfície de volatilidade implícita fornece uma descrição resumida de seu mercado de opções. Considerando que os rendimentos dos títulos são diferenciados pelo seu tempo até o vencimento, as opções são diferenciadas por seu tempo até a expiração e o strike, logo requerem uma superfície ao invés de uma curva.

    A figura 1 demonstra uma superfície de volatilidade implícita do SPX em 15/09/2005, conforme apresentado em Gatheral (2011).

    Superfície de volatilidade implícita.

    Figura 1: Superfície de volatilidade implícita.

    Arbitragem estática

    Antes de definir o que é arbitragem estática que pode estar presente em uma superfície de volatilidade (ou na superfície de preço de opções), vamos partir para a intuição por trás desta definição.

    O princípio de ausência de arbitragem é dominante na teoria financeira. Este princípio nos informa que não deve existir lucro sem que se incorra em algum tipo de risco, o lucro sempre é a remuneração do investidor que aceitou carregar alguma forma de risco durante o investimento. Portanto, não devem existir perfis de lucro acima da taxa livre de risco (payoffs positivos) com probabilidade de 100%.

    Primeiro consideramos uma trava de alta com opções do tipo call. Excluindo-se os custos de transação, esta operação sempre oferece um retorno positivo ou zero, conforme a figura 2. Por mais que esta estratégia esteja montada fora do dinheiro, sempre existe uma possibilidade de ela ter lucro, \(S_T>K\) e portanto seu preço deve ser sempre maior que zero.

    Perfil de lucro de uma trava de alta.

    Figura 2: Perfil de lucro de uma trava de alta.

    É claro que quanto mais ITM estejam as opções, maior seu preço e quanto mais fora do dinheiro menor será seu valor até o limite inferior zero. Se levarmos a diferença entre os strikes, \(dK\) a zero temos que:

    \[\frac{\partial C}{\partial K}\leq 0\]

    Este é o limite de arbitragem para travas de alta ou, mais conhecido pelo termo em inglês call spread no-arbitrage e impõe que os preços das calls devem ser uma função descrescente no strike. De forma equivalente e através da paridade compra-venda este limite de arbitragem para as puts é:

    \[\frac{\partial P}{\partial K}\geq 0\]

    Arbitragem de borboleta

    Também deve ser imposta uma restrição na segunda derivada do preço das opções em relação ao strike, e esta é conhecida como limite de arbitragem para borboletas. Vejamos porquê.

    Considere uma estratégia do tipo borboleta, onde se compra uma quantia de calls no strike \(K-dK\), vende-se duas vezes esta quantia em \(K\) e compra-se novamente um lote em \(K+dK\), o perfil de lucro desta operação no vencimento está representado na figura 3.

    Borboleta realizada com calls.

    Figura 3: Borboleta realizada com calls.

    Seguindo a mesma linha de raciocínio anterior, como o payoff da borboleta é sempre não negativo também deve ser o seu valor para qualquer período anterior a expiração. Se denotarmos \(\pi_B\) o valor da borboleta, então \(\pi_B\geq0\).

    Agora imagine que escalamos a estratégia de forma que um lote de compras (na venda são dois lotes) seja de tamanho \(1/dK^2\), o valor para a montagem desta operação deve ser, portanto:

    \[ \pi_B=\frac{C(K-dK)-2C(K)+C(K+dK)}{dK^2} \]

    E se levarmos ao limite em que \(dK\rightarrow 0\), a equação acima torna-se justamente a segunda derivada do preço da call no strike \(K\).

    \[ \begin{aligned} \frac{\partial^2 C(K)}{\partial K^2}=& \pi_B\\ \geq & 0 \end{aligned} \]

    Ou seja, os preços das calls são uma função convexa nos strikes. O mesmo raciocínio pode ser feito para uma borboleta com puts e o resultado será equivalente, o preço das puts também deve ser uma função convexa nos strikes.

    Arbitragem de calendário

    Passamos agora a analisar os limites de arbitragem na estrutura a termo da superfície de volatilidade. A arbitragem de calendário normalmente é expressa em termos de monotonicidade dos preços em relação ao período para expiração. Ou seja, quanto maior o prazo de maturidade de uma opção para um mesmo preço de exercício, maior deve ser seu valor.

    É fácil de entender este limite com base nas probabilidades de exercício. Como sabemos, em um processo estocástico do tipo MBG a variância do processo cresce conforme a raiz do tempo, \(\sqrt{\tau}\). Quanto maior a variância do ativo subjacente, maior a probabilidade deste alcançar um determinado preço, mais elevado ou não. Assim, seja uma call ou put OTM quanto mais distante estiver seu prazo de maturidade, maior a probabilidade de exercício e portanto, maior seu valor.

    Dado que a relação de volatilidade total implícita e preço de uma opção também é direta e positiva, conforme demonstrado na parte 1 deste artigo, segue que a volatilidade total deve ser não decrescente no tempo para expiração.

    Esta relação pode ser expressa através da seguinte equação para uma call precificada através de B&S:

    \[ \frac{\partial C_{BS}(k, \theta(\tau))}{\partial \tau}=\partial_\theta C_{BS}\cdot\partial_\tau \theta \geq 0 \]

    onde \(\partial_\theta C_{BS}\) é a derivada parcial do preço da call em relação a volatilidade total implícita, que já demonstramos ser positiva e \(\partial_\tau \theta\) é a derivada parcial da volatilidade total implícita em relação ao tempo para maturidade que, portanto, deve ser maior ou igual a zero para obedecer a restrição imposta ao preço da call.

    Limites de inclinação

    Se mantivermos a volatilidade implícita constante para todos os strikes, os preços das calls no modelo B&S devem ser decrescentes. Por outro lado, para um strike fixo, o preço de uma call se eleva à medida que a volatilidade implícita aumenta. Suponha por um momento que a volatilidade implícita varia com o strike como é o caso nos smiles. À medida que o strike aumenta, se a volatilidade implícita aumentar muito rapidamente, seu efeito sobre o preço da call pode mais que compensar o declínio no preço devido a elevação do preço de exercício e, assim, levar a um aumento líquido no preço da opção. Isso violaria o requisito de que \(\partial C /\partial K \leq 0\) e, portanto, leva a um limite superior na taxa em que a volatilidade implícita pode aumentar com o strike.

    Novamente, o mesmo raciocínio pode ser imposto para o lado das puts. A volatilidade implícita não pode se elevar tão rapidamente quando os strikes se reduzem de forma que uma put de strike menor tenha valor mais elevado que outra que esteja mais próxima do dinheiro.

    Finalmente, um sumário dos limites impostos a uma superfície de preços de opções (calls no caso apresentado), que implicam em limites para a superfície de volatilidade é apresentado abaixo1:

    1. \(\partial_\tau C \geq 0\)
    2. \(\lim\limits_{K\rightarrow\infty}C(K, \tau)=0\)
    3. \(\lim\limits_{K\rightarrow-\infty}C(K, \tau)+K=a, \quad a \in \mathbb R\)
    4. \(C(K, \tau)\) é convexa em \(K\)
    5. \(C(K, \tau)\) é não-negativa

    Distribuição implícita

    O modelo B&S é baseado na suposição que o ativo subjacente segue uma distribuição log-normal em seus preços. Caso esta suposição fosse de fato realizada no mercado, o smile de volatilidade seria uma reta completamente horizontal, não haveria variação na volatilidade implícita conforme o preço de exercício. Entretanto, esta não é a realidade dos smiles e podemos fazer a pergunta inversa portanto, qual a distribuição neutra ao risco que está implícita no smile de volatilidade?

    Certamente não é uma log-normal. Na verdade, a densidade da distribuição que está implícita em um smile nada mais é que a convexidade deste smile, ou seja, sua segunda derivada em relação ao strike. Esta distribuição implícita também é por vezes chamada de RND (risk neutral density) e é muito útil para fazer a precificação de outras opções que não são observadas no smile ou extrair probabilidades de ocorrência de eventos precificadas pelo mercado.

    Pode-se obter este resultado a partir da definição do valor de uma call e é conhecido como a fórmula de Breeden-Litzenberger2. O valor de uma call é o valor esperado do payoff terminal desta call ponderado pela densidade neutra ao risco do subjacente. Ou seja:

    \[ C(S, t)=e^{-r\tau}\int\limits_{0}^\infty p(S,t,S_T,T)\max\{S_T-K, 0\}dS_T \]

    onde \(p(\cdot)\) é a densidade neutra ao risco e estamos supondo uma taxa de juros livre de risco constante durante o período de vida da opção. Como o payoff da call é não linear, sendo zero para qualquer valor de \(S_T \leq K\) e igual a \(S_T-K\) quando \(S_T > K\), podemos escrever esta equação como:

    \[ C(S, t)=e^{-r\tau}\int\limits_{K}^\infty p(S,t,S_T,T)(S_T-K)dS_T \]

    que pode ser rearranjada, com alguma simplificação na notação, da seguinte forma.

    \[ \begin{aligned} \frac{\partial C}{\partial K}=& -e^{-r\tau}\int\limits_{K}^\infty p(S_T)dS_T\\ e^{r\tau}\frac{\partial C}{\partial K}=& \int\limits_{-\infty}^K p(S_T)dS_T\\ e^{r\tau}\frac{\partial^2 C}{\partial K^2}=& \ p(K)\\ \frac{\partial^2 C_B}{\partial K^2}=& \ p(K)\\ \end{aligned} \]

    Onde usou-se a notação \(C_B\) para denotar a formulação de Black para o preço de uma call. Ou seja, a segunda derivada em relação ao strike do preço não descontado de uma call é a distribuição neutra ao risco do ativo subjacente, e é válida para todos preços de exercício.

    Portanto, se desejarmos saber qual a distribuição de probabilidades de preços do ativo subjacente em uma data futura que possua vencimento de opções, basta encontrarmos a convexidade do smile dos preços forward daquele vencimento3.

    Conclusão

    Este foi um artigo denso, porém com vários conceitos importantes para a compreensão do comportamento da superfície de volatilidade. A estrutura a termo também é existente na volatilidade implícita e está limitada pela ausência de arbitragem do tipo calendário. O smile de volatilidade, que é uma fatia da superfície com prazo de expiração constante, possui suas próprias limitações de forma, com a ausência de arbitragem do tipo borboleta e limitações quanto a inclinação.

    Por fim, foi demonstrado como a convexidade do smile de preços fornece a distribuição implícita para os preços do ativo subjacente para a data de expiração das opções.

    Referências

    Aurell, Alexander. 2014. “The Svi Implied Volatility Model and Its Calibration.” Master’s thesis, Kungliga Tekniska Högskolan.

    Breeden, Douglas T, and Robert H Litzenberger. 1978. “Prices of State-Contingent Claims Implicit in Option Prices.” Journal of Business. JSTOR, 621–51.

    Gatheral, Jim. 2011. The Volatility Surface: A Practitioner’s Guide. Vol. 357. John Wiley & Sons.

    Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies 6 (2). Oxford University Press: 327–43.

  • Retirado de
    Aurell (2014), p. 25.[↩][2]

  • Autores da formulação em seu artigo,
    Breeden and Litzenberger (1978)[↩][3]

  • Simples em teoria, muito mais complicado na prática, com diversos problemas para a extrapolação do smile para strikes extremos.

    Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments
    Smile de Volatilidade

    Smile de Volatilidade

    <br /> Smile de Volatilidade – Superfície de Volatilidade<br />

    A volatilidade instantânea, \(\sigma\), do ativo subjacente é a única variável no modelo B&S que não pode ser diretamente observada. De fato, a volatilidade (ou equivalentemente a variância) de um ativo é dita uma variável latente. Sabemos que ela existe e possui algum valor no processo gerador, o processo pelo qual os preços são formados, porém não conseguimos observá-la diretamente, apenas estimá-la. Uma das formas de estimação de volatilidade pode ser a partir de dados históricos, mas várias outras formas existem, entre elas processos GARCH, volatilidade realizada, volatilidade estocástica, etc.

    Uma vez que a volatilidade não pode ser diretamente observada, a prática comum no mercado é fazer o caminho inverso. Considerar os preços de mercado para as opções como dado, e a partir do modelo B&S inverter a equação de preço da Call ou Put para encontrar a volatilidade deste modelo que é compatível com os preços de mercado. A esta volatilidade encontrada damos o nome de volatilidade implícita.

    Portanto, o smile de volatilidade que tratamos neste post é na verdade um gráfico entre a volatilidade implícita, retirada de opções Européias (baunilhas, do inglês vanilla options) a partir do modelo B&S, contra os strikes destas opções.

    Reparametrizando B&S e definição de moneyness

    Nem sempre é interessante plotar o smile contra os strikes propriamente ditos, uma forma de avaliar o quanto uma opção está “dentro, fora ou no dinheiro” pode ser a grega Delta ou então o chamado moneyness (por favor, se alguém tiver uma boa tradução para este termo, deixe nos comentários). Tradicionalmente a medida de moneyness é a relação \(K/S\), ou seja o strike contra o preço corrente do subjacente. Porém existem outras definições mais interessantes para se trabalhar, entretanto, antes devemos fazer uso de algumas definições e vamos reparametrizar as expressões \(d1\) e \(d2\) do modelo B&S.

    Lembrando que em precificação de opções estamos no mundo neutro ao risco, vamos definir o valor forward, \(F\) do subjacente como o valor corrente composto pela taxa livre de risco até a maturidade da opção, ou seja:

    \[F=e^{r\tau}S\]

    A volatilidade (implícita) total pode ser definida como a volatiliade reescalada pela raiz do tempo, que nos dá uma informação da volatiliade esperada para o subjacente do período corrente até a maturidade. Da mesma forma, a variância total. Denotanto a volatilidade total por \(\theta\) e a variância total por \(w\), temos:

    \[\theta=\sigma_{imp}\cdot \sqrt{\tau}\]

    e

    \[w=\sigma_{imp}^2\cdot\tau\]

    Vamos também definir a medida forward log-moneyness e denotá-la por \(k\). Esta será a medida de moneyness que iremos utilizar ao longo deste e de outros artigos, portanto iremos utilizar este termo para designar o forward log-moneyness a não ser que expresso de forma contrária no texto.

    \[k=\ln\left(\frac{K}{S}\right)-r\tau=\ln\left(\frac{K}{F}\right)\]

    Logo, o strike está relacionado ao moneyness de forma que: \(K=Fe^k\).

    Podemos agora reparametrizar as expressões \(d1\) e \(d2\) do modelo B&S de forma que serão mais facilmente trabalhadas em modelos de volatilidade. Lembrando destas expressões que já foram apresentadas em artigo anterior:

    \[\begin{aligned} &d_{1}={\frac {\ln(S/K)+(r+\sigma ^{2}/2)(\tau)}{\sigma {\sqrt {\tau}}}}\\ &d_{2}={\frac {\ln(S/K)+(r-\sigma ^{2}/2)(\tau)}{\sigma {\sqrt {\tau}}}}=d_1-\sigma\sqrt{\tau} \end{aligned}\]

    Substituindo as expressões para forward log-moneyness e volatilidade total nas definições acima temos as novas parametrizações para \(d1\) e \(d2\):

    \[\begin{aligned} &d_{1}={-\frac{k}{\theta}+\frac{\theta}{2}}\\ &d_{2}={-\frac{k}{\theta}-\frac{\theta}{2}}=d_1-\theta \end{aligned}\]

    Retomando o valor da opção do tipo Call no modelo B&S, podemos reescrever sua fórmula de apreçamento da seguinte forma:

    \[\begin{aligned} C(K, \tau)=&SN(d1)-Ke^{-r\tau}N(d2)\\ e^{r\tau}C(K, \tau)=&FN(d1)-KN(d2)\\ =&F\left[N(d1)-e^kN(d2)\right] \end{aligned}\]

    Esta equação é conhecida como a forma de Black de precificação (Black Call price formula), que relaciona os valores forward da opção (também conhecido como valor não descontado), do subjacente e do strike. Esta formulação é particularmente útil quando formos extrair a distribuição neutra ao risco do subjacente que está implícita nos preços de mercado das opções.

    Características de smiles de volatilidade

    Caso o modelo de Black, Schole e Merton estivesse em acordo com a realidade, e os ativos tivessem seus preços formados a partir de um verdadeiro MBG, a volatilidade implícita seria uma constante. O gráfico do smile de volatilidade seria uma reta horizontal, com a mesma volatilidade para qualquer nível de moneyness e se considerarmos a superfície toda (que leva em conta os diversos tempos para expiração) esta seria paralela ao domínio \((k, \tau)\). Não estaríamos escrevendo (e você lendo) este artigo se este fosse o caso…

    O fato é que o modelo B&S é um modelo muito restritivo, com inúmeras suposições que não se verificam no mundo real e que por conseguinte, tornam os resultados do modelo pouco acurados. Entretanto este é um modelo muito conhecido, de fácil assimilação por parte dos agentes de mercado e que virou a língua franca nos mercados de derivativos. Se todos os traders conversarem em termos do modelo B&S, todos se entenderão, mesmo que internamente cada um possua seu próprio modelo de apreçamento.

    Entre as características tipicamente observadas em smiles (e superfícies) de volatilidades pode-se citar:

    • As volatilidades implícitas variam conforme o strike e prazo de expiração
    • Smiles apresentam skew. Maior inclinação em uma das asas, representando uma maior probabilidade daqueles strikes acontecerem
    • Smiles de equity tipicamente são negativos
    • Mercados diferentes apresentam padrões de smile diferentes

    Mercados cambiais

    Opções sobre moedas possuem tipicamente um smile de volatilidade conforme mostrado na figura 1 abaixo. A volatilidade implícita é relativamente baixa para opções ATM. Esta torna-se progressivamente maior quando a opção se move para dentro do dinheiro ou para fora.

    Smile de volatilidade típico de um mercado cambial.

    Figura 1: Smile de volatilidade típico de um mercado cambial.

    Caso a distribuição dos preços do ativo subjacente, neste caso uma taxa de câmbio fosse perfeitamente log-normal como no modelo B&S, o smile não teria esta curvatura. Desta forma podemos afirmar que o mercado, ao precificar as opções, acredita que a distribuição deste ativo possui caudas com maior densidade que supõe a log-normal, existem maiores probabilidades de retornos muito baixos ou muito altos.

    Mercados de equities

    Nos mercados de equities, ações, índices de ações e ETFs, por exemplo, o smile apresenta uma característica de assimetria (skew, em inglês) negativa. A asa esquerda (parte onde as puts estão fora do dinheiro) apresenta valores de volatilidade implícita muito maiores que suas contrapartes no lado das calls. Este comportamento reflete a percepção de mercado de uma maior probabilidade de grandes perdas nas ações que altos ganhos, gerando portanto, uma distribuição de preços assimétrica. Como existe uma maior probabilidade de perdas extremas, o seguro para estas, ou seja, uma put é relativamente mais cara que uma call.

    Smile de volatilidade típico de uma ação ou índice de ações.

    Figura 2: Smile de volatilidade típico de uma ação ou índice de ações.

    Smile como forma de precificação

    Analisando a equação de B&S com a parametrização para \(d1\) e \(d2\) dada no início deste artigo é possível verificar que existe uma relação direta entre volatilidade implícita e preço de uma opção, seja esta uma call ou put.

    Como \(d1\) é estritamente crescente em \(\theta\) e \(d2\) é estritamente decrescente e ao mesmo tempo o preço de uma opção é crescente em d1 e decrescente em d2, logo, temos uma relação direta entre o preço de uma opção e sua volatilidade implícita para uma dada maturidade. Em outras palavras, em um smile, tudo o mais constante, quanto maior a volatilidade implícita maior o preço da opção naquele strike.

    Outra forma de verificar esta relação é perceber que a grega Vega, que é calculada da mesma forma para calls e puts, é sempre positiva. Ou seja, um aumento no valor da volatiliade sempre leva a elevações no preço de uma opção.

    Desta forma é normal entre os praticantes de mercado fazer a precificação de opções em termos de “pontos de volatilidade” e não em valores monetários propriamente ditos. Isto porque o modelo B&S, apesar de não ser o modelo correto (nenhum é) para a precificação de opções, é conhecido e de fácil entendimento para todos. Então todos os praticantes podem fazer suas cotações em termos de volatilidades implícitas, que são extraídas de opções baunilhas com o modelo B&S, e somente na hora de fechar um negócio e liquidar o pagamento, o preço efetivo a ser pago é acordado entre as partes.

    Conclusão

    O modelo de Black-Scholes-Merton, pode ser considerado a pedra fundamental para a precifição de opções. Entretanto, este modelo apresenta uma séries de limitações que fazem com que os praticantes de mercado utilizem outras técnicas neste mercado. Uma destas é o uso do smile de volatilidade e sua interpretação como forma de precificar opções e extrair informações implícitas nos preços.

    A assimetria do smile e suas asas informam que as distribuições de probabilidades para o ativo subjacente não são exatamente log-normais, e podem apresentar discrepâncias significativas, especialmente nas caudas da distribuição que muito interessam a gestão de risco, por exemplo.

    Posted by Rafael F. Bressan in Derivativos & Riscos, 3 comments