" />

Derivativos & Riscos

Estratégias Iniciais no Mercado de Opções

Estratégias Iniciais no Mercado de Opções

Se você anda pesquisando sobre o mercado financeiro ou possui particular interesse nesse campo, com certeza você já esbarrou na palavra “derivativos”. Ao longo do tempo esse mercado adquiriu grande representatividade para os agentes econômicos, servindo como mecanismo de proteção contra a oscilação de preços e também como ferramenta para a especulação.

De maneira intuitiva podemos entender os derivativos como títulos que possuem origem em outro mercado ou que estão intimamente relacionados à esse mercado. De forma pragmática, “Derivativos são títulos cujos valores dependem dos valores de outras variáveis mais básicas”, Antonio Carlos Figueiredo (2016, p. 01). Temos como alguns exemplos desses instrumentos, o mercado futuro de petróleo, cujo preço depende dos volumes e patamares de preços no mercado à vista de petróleo.

Com o objetivo de diferenciar o mercado de derivativos do entendimento usual de que um “título” = “investimento”, Martin Mayer define a utilização desse mercado: “Não se pode dizer que uma operação com derivativos é um investimento. Na realidade, representa uma expectativa da direção, dimensão, duração e velocidade das mudanças do valor de outro bem que lhe serve de referência” (Martin Mayer, artigo “The Next Generation”, revista The Bankers, 1997).

Dentro desse mercado podemos segmentá-lo em quatro tipos: a termo, futuro, de opções e de swap. O último, em função da sua semelhança com o mercado a termo, não é considerado por alguns especialistas como uma quarta modalidade de derivativo.

Nesse artigo daremos continuidade ao estudo sobre o mercado de opções. Em consonância com o primeiro post publicado no blog do Clube de Finanças, “Introdução ao Mercado de Opções”, vamos apresentar algumas estratégias que podem ser operacionalizadas nesse mercado, usando as posições conhecidas como “travas”, utilizadas essas com o objetivo de limitar o risco. Analisaremos as principais estratégias dentro dessa posição, começando pelas “Posições Sintéticas”, “Travas de alta e baixa” e a estratégia “Butterfly”.

Estratégias

  • Posições Sintéticas

Dentre as posições sintéticas temos, de forma pragmática, uma situação cujo investidor acredita numa determinada situação de mercado (como por exemplo, uma elevação do Ibovespa), mas, para se proteger de algum possível erro na sua predisposição ele mescla algumas estratégias para proteção (hedge). Então, iremos aos exemplos desde expectativa de alta, quanto baixa de mercado:

De início, assumindo uma expectativa de alta no mercado, o indivíduo fica comprado no índice Bovespa (exemplo, compra de BOVA11), também denominado de Long Instrument.

Conforme observamos na tabela 1.1 acima, o valor da compra de BOVA11 no mercado à vista é de R$ 90,00 e, de acordo com possíveis (des)valorizações, o seu preço tende a mudar no futuro. Caso o investidor venda o ativo, ele realizará seu lucro (ou prejuízo) de acordo com o “Resultado Final” e demonstrado no gráfico abaixo.

Com o intuito de se proteger de uma possível queda no índice, usar-se-ia uma Long Put, ou seja, comprar uma opção de venda do mesmo ativo (BOVA11). Assim, como exemplificado na tabela 1.2, se pagaria um prêmio ao vendedor desta put para ter o direito de realizar uma venda de BOVA11 a R$ 90,00 caso este ativo perca valor – no caso do vendedor, este teria a obrigação de comprar o ativo.

Aqui, observamos que caso o ativo se valorize, o investidor não irá efetuar seu direito de venda a R$ 90,00, ficando com apenas os custos do prêmio pago. Caso contrário, quanto maior a desvalorização frente aos R$ 90,00, mais In The Money (ITM) esta posição ficará.

Ao mesclarmos estas duas estratégias, chegaremos a uma Long Synthetic Call:

Sendo assim, há um limite de perda máxima de R$ 5,00 caso sua expectativa de valorização do mercado não se concretize. Para este mesmo exemplo, formamos uma estratégia inversa, ou seja, expectativa de desvalorização de mercado, cujo investidor ficaria vendido em BOVA11 – denominado de Short Instrument.

Junto a esta expectativa, neste caso o investidor pretende se proteger de uma eventual valorização de mercado. Com isto, ele irá adquirir o direito de comprar uma ação aos mesmos R$ 90,00, ou seja, Long Call. Ilustrados na tabela 1.5:

Ao juntar estas duas estratégias, resultarão em uma Long Synthetic Put, cujo indivíduo ficaria protegido de uma inesperada valorização de mercado fixando sua perda máxima em R$ 5,00, conforme ilustrado abaixo:

Como segundo exemplo, temos uma expectativa de desvalorização da Bolsa onde o indivíduo fica vendido em BOVA11. Segundo o exemplo anterior, resultaremos na mesma estratégia de Short Instrument.

No entanto, para este exemplo vamos supor que o investidor em questão será a parte vendedora do mercado de opções (ou seja, ele terá a obrigatoriedade de compra/venda e receberá um prêmio pelo ativo). Conforme ilustraremos na tabela a seguir, este ficará vendido em uma opção de venda (Short Put) com os mesmos R$ 90,00 de strike.

Como resultado, chegaremos a Short Synthetic Call cuja perda é diluída caso sua primeira estratégia não se concretize. No entanto, ele terá seu ganho limitado a R$ 5,00 conforme figura abaixo:

Como exemplo de expectativa de elevação de mercado. Teremos um Long Instrument, ou seja, o investidor comprado em BOVA11.

E para se proteger, ele ficaria vendido em uma opção de compra a R$ 90,00 – denominada de Short Call.

Por fim, estas duas estratégias resultariam em um Short Synthetic Put, também chamada de “Venda Coberta”. Assim como no outro caso, limitamos o ganho máximo em R$ 5,00, no entanto, ocorreria um hedge para uma eventual desvalorização de mercado.

  • Posições Bull e Bear

No primeiro artigo sobre o mercado de opções, a Trava de alta com a compra e venda simultânea de duas opções de compra (Calls) foi demonstrada ao leitor. Neste artigo pretendemos abordar a Trava de baixa e também a Trava de alta, no entanto, executando essa última estratégia através de opções de venda (Puts).

Assumindo a expectativa de um mercado em baixa, podemos explorar a Trava de baixa operada através de duas puts,. Assim como outras travas, essa posição também pode ser montada com calls. Chamada de Bear Put Spread, nessa estratégia o investidor compra uma put de preço de exercício superior e vende uma put com preço de exercício inferior. Ao executar essa posição espera-se que o preço do ativo no mercado à vista caia, porém, não alcance o preço de exercício da put vendida.

Tomando como exemplo a compra de uma put com preço de exercício de exercício de R$ 1.200 por um prêmio de R$ 115 e a venda de outra put com preço de exercício de R$ 1.000 por um prêmio de R$ 30, o investidor “trava” uma área de ganho entre R$ 1.000 e aproximadamente R$ 1.100 do preço do ativo objeto. Os gráficos e tabelas abaixo elucidam a estratégia:

Com base nas opções utilizadas como exemplos, podemos auferir que a perda máxima da operação é de R$ 85 (a diferença entre o prêmio recebido e o pago) e o retorno máximo é de R$ 115, no momento em que o ativo objeto atingir R$ 1.000. É importante salientar que as opções de venda a serem compradas e vendidas devem possuir datas de vencimento iguais.

Em contraponto à Trava de baixa, a Trava de alta pode ser montada quando o titular da posição acreditar em uma alta no mercado. Ao executar essa estratégia o investidor deseja estar “comprado”, entretanto, acredita que existe certo ponto de máximo para o preço do ativo. Podemos definir como uma expectativa de “alta moderada”.

Utilizaremos como exemplo de Trava de alta, a Bull Put Spread, operada através de opções de venda. Nessa estratégia o investidor escolhe duas opções que proporcionem o maior retorno ou a execução mais barata, vendendo uma put com preço de exercício maior e comprando uma put com preço de exercício menor.

Ao vender uma put de preço de exercício R$ 1.300 com prêmio de R$ 120 e comprar uma put com preço de exercício de R$ 1.200 e prêmio de R$ 35 o investidor “trava” o retorno máximo da operação em R$ 85 e ao mesmo tempo a perda máxima em R$ 15.

As tabelas e gráficos auxiliam na visualização da estratégia, a qual também deve ser executada através de puts com datas de vencimento iguais.

  • Butterfly

Agora, vamos explorar uma trava conhecida como Short Butterfly. Nessa estratégia, ocorre a venda de uma call e de uma put de mesmo preço de exercício, no exemplo, R$350,00, com prêmios de R$10,00 e R$15,00, respectivamente. Ocorre também a compra de uma call de preço de exercício superior, R$400,00, por R$3,00 e de uma put de preço de exercício inferior, R$300,00, por R$4,00. O objetivo dessa estratégia é restringir o risco aos preços de exercício das opções compradas. Para facilitar a compreensão, vamos ao gráfico e tabelas:

Como é possível observar no gráfico, a zona de risco dessa operação se concentra entre o preço de exercício da put comprada e o preço de exercício das opções vendidas menos o prêmio líquido da operação, neste caso, R$18,00. Também está compreendida entre o preço de exercício das opções intermediárias (inferior e superior ao preço de exercício) e o prêmio líquido. O ganho estará limitado, espera-se que o mercado oscile e permaneça sempre entre os preços da primeira call comprada e da primeira call vendida, descontado os prêmios pagos.

Com estas estratégias abordadas pretendemos que os leitores entendam um pouco mais a respeito do mercado de derivativos (principalmente, na área de opções), assim como já fora discutido em posts anteriores. Dentre os pontos que entramos em questão, boa parte destas técnicas tem o viés de reduzir a volatilidade ou exemplificar um investidor que esta aplicado em baixa volatilidade de mercado – ou em um ativo específico.

De forma geral, aqui aprendemos algumas técnicas básicas. Conforme houver mais posts acerca deste tema iremos cada vez mais mostrar ao leitor possíveis estratégias de maior complexidade, mas ainda assim, de forma didática.

Ainda ficou com alguma dúvida? Procure-nos no Instagram e no Facebook!


Referências:

Figueiredo, Antonio Carlos. 2016. Introdução aos derivativos – 3 ed. rev. e ampl. – São Paulo : Cengage Learning.

Mayer, Martin. 1997. “The Next Generation.” The Bankers.

Silva Neto, Lauro de Araújo. 1996. Opções: do tradicional ao exótico – 2. ed. São Paulo: Atlas.

Autores:

Caroline Zago, Pedro Rosa e Thiago Barreto
Posted by Thiago Ranzolin Barreto in Derivativos & Riscos, 0 comments
Precificação de opções via redes neurais

Precificação de opções via redes neurais

Em 1973, Fischer Black, Myron Scholes e Robert Merton publicaram uma maneira analítica para precificar opções, de modo que se pudesse relacionar a dinâmica do preço do ativo subjacente, uma taxa de juros livre de risco, o intervalo de tempo até a data de expiração da opção, o strike da opção e a volatilidade futura deste ativo, sem depender de um retorno esperado (algo muito mais imprevisível).

HIPÓTESES DO BLACK & SCHOLES

Como já vimos em artigos anteriores, a fórmula de precificação de Black & Scholes (Black 1973) assumia a hipótese de lognormalidade para os retornos do ativo subjacente, além de que a volatilidade implícita do ativo se manteria constante para opções de um mesmo ativo e de mesmo moneyness. Em relação a hipótese de lognormalidade, isso nos diz que temos um método paramétrico de precificação, o que pode ser ruim (temos que assumir uma distribuição que não se ajusta com o que acontece nos mercados, que apresentam caudas longas), e a volatilidade implícita constante também não se concretiza, dando origem ao fenômeno chamado de “smile de volatilidade”, algo também já tratado nos nossos artigos antigos.

ENSINANDO UMA MÁQUINA A PRECIFICAR OPÇÕES

Na década de 70, seria muito difícil construir um método prático e data-driven de precificação de opções, já que não se possuía poder computacional suficiente para realizar a mineração necessária; tínhamos que ter uma maneira analítica de precificação, o que começou com a fórmula de Black & Scholes (que garantiu o Prêmio Nobel aos pesquisadores). A partir da década de 90, com o avanço computacional, alguns pesquisadores começaram a se interessar por métodos data-driven de precificação, podendo se desvencilhar das hipóteses pouco realistas.

Para tanto, podemos pensar em algumas possibilidades: tendo informações sobre as características de uma determinada opção (o seu preço de mercado, uma volatilidade implícita realizada, um determinado intervalo de tempo até a data de expiração, com o moneyness da opção, etc…), teríamos condições de ensinar um algoritmo a precificar esta opção?

Em (Hutchinson 1994), esta abordagem foi realizada com a utilização do método das redes neurais. A abordagem do pesquisadores do MIT era de ensinar uma máquina a precificar opções de maneira não-paramétrica e que não assumisse as hipóteses tão contestadas por outros pesquisadores. Colocando como input as informações teoricamente determinantes para os preços das opções, o artigo buscou ver o ajuste das previsões realizadas com o que realmente aconteceu nos mercados. Outro bom artigo, aplicando a mesma técnica mas para opções de outro mercado, é o de (Huynh 2018).

REDES NEURAIS



Como um resumo sobre o método das redes neurais, (Friedman 2001, 389) traz que a ideia é extrair combinações lineares entre as variáveis explicativas e então modelar a variável dependente (no nosso caso, o prêmio da opção) como uma função não-linear das variáveis explicativas. O modelo de redes neurais também é chamado de multilayer perceptron, onde o modelo comprime diversas camadas de regressões logísticas com não-linearidades contínuas (Bishop 2006, 226); assim é formada a função de máxima verossimilhança que é a base das “redes de treino”.

Ao contrário do que se pensa, a pesquisa sobre métodos de inteligência artificial, e mais especificamente de redes neurais, começou já na década de 40, com (McCulloch 1943), em “A Logical Calculus of The Ideas Immanent in Nervous Activity”. A ideia era de simular as redes neurais do cérebro como forma de computadores estarem aptos a aprenderem e tomarem decisões como um humano.

Para isso, matematicamente, construímos uma função de ativação \(y\), onde \(y\) é uma função de uma função não-linear das combinações lineares entre os inputs dados (\(\phi(x)\)), ponderada por pesos que, inicialmente, são aleatórios (\(w_j\)), entre 0 e 1.

\[ y(\mathbf{x, w})=f\left(\sum_{j=1}^M w_j\phi_j(\mathbf{x})\right) \]

Esses pesos, com o método de treino estipulado (backpropagation), será alterado de forma com que se alcance o erro mínimo da função para os dados inseridos. Temos que M é o número de combinações lineares, que, somados, gerarão o primeiro input para o treino da função.

FEED FORWARD NETWORK

Agora, derivando o algoritmo para chegarmos em \(y(\mathbf{x, w})\), trazido acima:

1º – Primeiramente, teremos o somatório da multiplicação do vetor de pesos \(\mathbf{w}\) com o vetor de inputs \(\mathbf{x}\). Temos que \(w_{ji}\)é um vetor de pesos que serão alterados ao longo do treinamento da rede. Faremos esse mesmo cálculo para todas as nossas variáveis

\[ a_{ji} = \sum_{i = 0}^{D} w_{ji}^{(1)}x_i \]

2º – Temos de transformar o vetor de valores ponderados \(a_{ji}\) através de uma função de ativação, que poderá ser uma função que já é conhecida de econometristas e estudiosos da estatística: a função sigmoidal, que é a utilizada na regressão logística

\[ \sigma(a) = \frac{1}{1 + exp(-a)} \]

Com isso, temos então o que é chamado de “hidden layer”.

3º – Realizar novamente a ponderação dos valores, porém agora utilizando os hidden layers como input.

Logo, teremos uma nova ativação dos outputs pela função sigmoidal, dado por um input de uma função sigmoidal anterior. Nesse caso, duas camadas da rede neural foram utilizadas. Desta forma, podemos combinar estas várias etapas e chegar nesta função para a rede neural:

\[ y(\mathbf{x, w})= \sigma(\sum_{j=0}^M w_{kj}^{(2)} \sigma(\sum_{i=0}^D w_{ji}^{(1)}x_i)) \]

BACKPROPAGATION

Tendo um vetor de outputs, ou seja, valores preditos para o target utilizado, buscamos um vetor de pesos que minimize a seguinte função:

\[ E(\mathbf{w})= \frac{1}{2} \sum_{n=1}^N ||\mathbf{y(x_n, w) – t_n}||^2 \]

Ou seja, sendo \(y(\mathbf{x, w})\) um vetor de outputs e \(\mathbf{t_n}\) o vetor dos targets iniciais, queremos minimizar a soma dos erros quadrados. Os parâmetros que são alteráveis são os pesos, tanto da primeira camada quanto da segunda utilizada. OBS: O fator (½) é adicionado para ser cancelado junto com o expoente durante a diferenciação

A partir daqui, temos um problema computacional: simular infinitas possibilidades de vetores de pesos para identificar quais são os vetores que minimizam a soma do erro quadrado é uma tarefa computacionalmente exigente. Será que temos como usar a matemática para facilitar esse processo?

Para este problema, o método das redes neurais se utiliza do gradient descent, que é uma forma iterativa para se alcançar o mínimo de uma função.



Queremos encontrar os vetores de pesos que minimizem a função erro. Assim, aplicamos a regra da cadeia para derivar a função erro:

\[ {\frac {\partial E}{\partial w_{ij}}}={\frac {\partial E}{\partial o_{j}}}{\frac {\partial o_{j}}{\partial {\text{net}}_{j}}}{\frac {\partial {\text{net}}_{j}}{\partial w_{ij}}} \] Sendo:

\[ 1) {\frac{\partial net_j}{\partial w_{ij}}}={\frac {\partial }{\partial w_{ij}}}\left(\sum _{k=1}^{n}w_{kj}o_{k}\right) \]

que será simplesmente \(o_k\), sendo \(o_k\) um vetor que se for em relação a primeira camada, o input bruto; se for em relação a segunda layer, será o output da função de ativação.

\[ 2) {\frac{\partial o_j}{\partial net_{j}}}={\frac {\partial }{\partial net_{j}}} \varphi(net_j) = \varphi(net_j)(1 – \varphi(net_j)) \]

que é a derivada parcial da função de ativação (neste caso, a função sigmoidal), e a função abaixo, que é a derivada parcial da função perda com relação à hidden layer:

\[ 3) {\frac{\partial E}{\partial o_{j}}}={\frac {\partial E }{\partial y}} = {\frac {\partial}{\partial y}} {\frac {1}{2}}(t – y)^2 = y – t \]

Assim, atualizaremos os pesos com os resultados obtidos através da otimização, e seguiremos o processo iterativo de encontrar o mínimo da função.

OBS: Um problema do método do gradient descent é que ele pode encontrar um mínimo local, não um mínimo global, que é o que nos interessaria. Há formas de contornar este problema, como, por exemplo, assumindo uma versão probabilística para a função perda. Dada a sua complexidade, deixaremos para artigos futuros a sua explicação. Além disso, outras formas de se alcançar melhores resultados com redes neurais para opções seria de segmentar as opções em ATM (at the money), OTM (out of the money), podendo captar melhor as características de ambas as situações.

Também, por utilizarmos um dataset pequeno e gratuito, a estimação foi feita dentro da amostra; vale ressaltar a possibilidade de overfitting. Por ser uma abordagem didática, vale a demonstração. A literatura recomenda alguns anos em informações diárias para uma precificação mais assertiva, mas, por serem bases pagas (e muito bem pagas), deixaremos uma abordagem mais técnica para um futuro post.

REDE NEURAL NO R

Os dados foram retirados do site ivolatility.com

##Importando os dados que serão utilizados

smile_volatilidade <- 
  rio::import("../../static/input/IV_Raw_Delta_surface.csv") %>%
  select(period, moneyness, iv) %>% 
  mutate(period = period/365)

##Executando o algoritmo através do pacote neuralnet
##Foram escolhidas duas hidden layers para análise

rede_neural <- neuralnet(iv ~ period+moneyness, smile_volatilidade, hidden = 2)
iv_predito <- as.data.frame(rede_neural$net.result) 

df_nn <- cbind(smile_volatilidade$iv, iv_predito)

colnames(df_nn) <- c("volatilidade_implicita", "volatilidade_predita")

##Criando uma coluna com os erros da predição

df_nn <- df_nn %>% mutate(erro = volatilidade_implicita - volatilidade_predita)

hist(df_nn$erro,
     main = "Distribuição dos erros da volatilidade realizada pela predita",
     xlab = "Erro",
     ylab = "Frequência",
     xlim = c(-0.04, 0.04))

plot(rede_neural, rep = "best")



Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. springer.

Black, Myron, Fischer e Scholes. 1973. “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81 (3). The University of Chicago Press: 637–54.

Friedman, Trevor e Tibshirani, Jerome e Hastie. 2001. The Elements of Statistical Learning. 10. Springer series in statistics New York.

Hutchinson, Andrew W e Poggio, James M e Lo. 1994. “A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks.” The Journal of Finance, no. 3. Wiley Online Library: 851–89.

Huynh. 2018. “Modelling and Forecasting Implied Volatility Using Neural Network.” Hanken School of Economics.

McCulloch, Walter, Warren S e Pitts. 1943. “A Logical Calculus of the Ideas Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics 5 (4). Springer: 115–33.

Posted by Gabriel Dias in Derivativos & Riscos, 0 comments
Algo trading com Quantopian

Algo trading com Quantopian

Abriremos nossas discussões sobre algorithmic trading, ou algo trading para os iniciados, fazendo um review da plataforma mais popular atualmente, o Quantopian.

Da própria definição sobre a plataforma temos que:

O Quantopian é uma empresa de investimentos quantitativos com origem em crowd source. Nós inspiramos pessoas talentosas de todo o mundo a escrever algoritmos de investimento.

O Quantopian fornece capital, educação, dados, um ambiente de pesquisa e uma plataforma de desenvolvimento para autores de algoritmos (quants).

Mas o que isso tudo significa na prática? O Quantopian nasceu com o desejo de encontrar na multidão de pessoas, talentosos quants que pudessem escrever algoritmos de investimentos bons o suficiente para receberem um aporte de capital. Da necessidade de como fazer esta visão tornar-se realidade, o quantopian foi sendo moldado. Talvez a ordem das palavras destacadas no parágrafo anterior devessem constar na forma inversa. A plataforma surgiu como um ambiente de desenvolvimento, agregou um ambiente de pesquisa, fornece dados gratuitos e pagos (premium), edução na forma de tutorias e lectures e por fim, se o seu algoritmo se destacar na competição, eles financiam um fundo quantitativo que roda o seu algo e lhe paga royalties.

Ambiente de desenvolvimento

A chamada IDE (de Interactive Development Environment) é toda baseda na linguagem Python, a mais utilizada1 atualmente para ciência de dados e machine learnig. É na IDE que a implementação e o backtesting de estratégias deve ser feito. Ela registra automaticamente as principais métricas de desempenho e compara sua estratégia com um benchmark. Algoritmos também podem ser simulados usando dados ao vivo, algo conhecido como paper trading. Operar com dinheiro real, live trading não é mais possível no Quantopian. No passado já houve uma integração com uma conhecida corretora americana, mas esta possibilidade não existe mais.

Nesta IDE três métodos estão definidos para serem implementados pelo quant, um deles é obrigatório que são as definições de setup do backtesting que devem constar no método initialize(context). Os métodos opcionais são handle_data(context, data), em geral utilizado em algoritmos minuto-a-minuto e before_trading_start(context, data) muito utilizado em conjunto com algum método de pipeline que baixa e processa o algoritmo de investimento sobre um determinado universo de ativos.

Na figura abaixo podemos ver uma amostra parcial do ambiente de desenvolvimento, com o código a esquerda e alguns resultados de backtesting a direita e logs da simulação logo abaixo.

Ambiente de desenvolvimento - IDE

Ambiente de pesquisa

O módulo de research do quantopian é fundamentado no conceito de notebooks do IPython. De fato, o ambiente é um Jupyter notebook, como toda a sua interatividade disponível. Neste notebook o quant pode programar seus algoritmos e testá-los sem fazer um backtest completo.

Nesta plataforma aberta pode-se carregar todos os dados disponibilizados pela plataforma e explorar novas ideias de investimento. O ambiente de pesquisa é o lugar para fazer hipóteses e análises, “comprar empresas de baixo P/L realmente dá lucro a longo prazo?”, “se eu montar uma estratégia long-short com os fatores de Fama&French, vou ser bem sucedido?”, estes questionamentos devem ser feitos e analisados no ambiente de pesquisa. Neste ambiente se tem acesso a todos os dados, volume, fundamentos corporativos e outros conjuntos de dados, incluindo dados de sentimento entre outros, para os EUA. Para outros países, incluindo o Brasil, existem dados diários de preço e volume e fundamentos, que exploraremos na seção seguinte.

O ambiente de pesquisa também é útil para analisar o desempenho de backtests. Você pode carregar o resultado do backtest de um algoritmo e analisar resultados e comparar com desempenhos de outros algoritmos.

Por ser implementado em Python, ele abre a possibilidade de usar bibliotecas poderosas para analisar dados de séries temporais, como StatsModels para estatística e scikit-learn para machine learning em Python. Estas bibliotecas também estão disponíveis no ambiente de desenvolvimento e seu algoritmo pode fazer uso destas e participar da competição.

Além disso, o Quantopian desenvolveu2 várias ferramentas internas, como o Alphalens – uma nova ferramenta para análise de fatores “alfa”. Aqui deixo o alfa entre parentêses pois a ideia deles é encontrar uma métrica, que chamam de “fator”, que explique os retornos do portfolio. Portanto, no melhor entendimento deste autor, se trata de beta e não de alfa.

Na figura abaixo temos um amostra do ambiente de pesquisa. Pode-se verificar que em muito pouco este difere de um típico Jupyter notebook.

Bases de dados

Certamente o foco da empresa ainda é os EUA. Para aquele mercado a plataforma conta com dados históricos em barras de 1 minuto para ações, ETFs e futuros dos EUA desde 2002 até o último dia completo de negociação.

Os dados históricos de preço ou volume é ajustado para splits, fusões e dividendos na data atual da simulação. Esse ajuste é feito para que o algoritmo possa fazer cálculos corretos usando os valores da janela histórica.

O Quantopian também fornece acesso a dados fundamentalistas e de demonstrações contábeis. Os dados da Morningstar consistem em mais de 600 métricas que medem o desempenho financeiro das empresas. Também estão disponívei dados do vendor Factset. O uso mais comum desses dados é a filtragem para um subconjunto de ativos para uso posterior em um algoritmo.

O banco de dados inclui todas as ações e ETFs negociados desde 2002, mesmo aqueles que não são mais negociados. Isso é muito importante porque ajuda a prevenir o famoso survivorship bias, um dos vilões de “super” algoritmos que funcionam somente no backtesting. Bancos de dados que omitem títulos que não são mais negociados ignoram falências e outros eventos importantes, e levam a um falso otimismo sobre um algoritmo.

Uma lista com todas as bases de dados disponíveis pode ser consultada aqui. Uma interessante opção para aqueles que desejam utilizar a plataforma como meio de pesquisa é a possibilidade de colocar no ambiente o seu próprio conjunto de dados! Mesmo que este conjunto de dados não possa fazer parte de um algoritmo de competição, esta possibilidade é muito interessante para descobrir novas estratégias lucrativas com dados que por ventura não estejam disponíveis no Quantopian, e após esta descoberta, utilizar a plataforma de sua preferência para negociar.

Felizmente, e para alegria geral da nação, nem só de EUA vive o Quantopian. No final de 2018 a plataforma anunciou que passou a suportar, no ambiente de pesquisa, dados de preço/volume e dados fundamentalistas de 26 países. O Brasil está entre eles. Os dados de preços e fundamentos para cada um desses países estão disponíveis desde 2004. Os dados de preços são diários, incluindo as barras do OHLCV (Open-High-Low-Close-Volume). Os dados de fundamentos são do FactSet Fundamentals.

Educação

No quesito educação do investidor a plataforma oferece recursos como um ativo fórum de discussões, tutoriais para aprendizagem inicial e uma série de lectures que são vídeos demonstrando alguns usos mais avançados dos recursos.

No fórum podem ser compartilhados tanto backtests quanto notebooks e a troca de ideias de aloritmos é fomentada. Entretanto, predominam as discussões acerca de implementação dos algos e correção de bugs. Os tutoriais são bastante instrutivos, e recomenda-se iniciar por ali. Apesar de a linguagem de programação ser o conhecido Python, a plataforma faz uso intenso de sua API proprietária. São diversas classes, métodos e atributos que não fazem parte do core ou mesmo das famosas bibliotecas da linguagem e sim, são criações do Quantopian. Como iniciar diretamente pela referência a API é muito difícil e certamente logo afastaria iniciantes da plataforma, a empresa fez bons e simples tutoriais que já permitem ao quant wannabe criar seus primeiros algos, analisá-los através do Alphalens e rodar o backtesting na IDE.

Mas, na opinião deste autor, a verdadeira estrela desta seção são as lectures que podem ser vistas nesta lista. Estas são vídeos, no estilo webinar, e são acompanhadas de seus respectivos notebooks que podem ser clonados e modificados ao gosto do usuário. Os temas abordados são abragentes e relevantes, indo desde introdução ao NumPy e pandas, passando por conceitos importantes como momentos estatísticos e regressão múltipla, indo até assuntos avançados e muito pertinentes para qualquer algo trader como pairs trading, cointegração, análise de componentes principais e filtros de Kalman. São ao todo 56 lectures, material de ótima qualidade.

Conclusão

O Quantopian é uma excelente plataforma para pesquisar e implementar estratégias de negociação. Entre seus pontos fortes destacamos o ambiente de pesquisa, baseado na interatividade dos notebooks, a vasta base de dados, o uso da linguagem Python e os tutoriais e lectures que fornecem um bom suporte para o iniciante. Entre os pontos negativos da plataforma o uso de muitas classes e métodos proprietários, com pouca documentação, soam como uma caixa preta para o usuário e dificultam bastante o aprendizado inicial.

Ainda assim, se você está procurando um lugar para começar, a plataforma é uma das mais completas e sugere-se iniciar pelos tutoriais e então aprofundar seus conhecimentos com a série Lectures.

Em um próximo artigo, o Clube de Finanças implementará um algoritmo de demonstração, explicando o passo-a-passo para realizar a pesquisa e implementar o backtesting na IDE.


  1. Retirado de https://www.kaggle.com/kaggle/kaggle-survey-2017#multipleChoiceResponses.csv 

  2. Desenvolveu e mantém em código aberto boa parte de sua estrutura no repositório: https://github.com/quantopian 

Posted by Rafael Bressan in Derivativos & Riscos, 0 comments
Superfície SVI

Superfície SVI

Superfície SVI, ou somente SSVI é uma generalização do modelo SVI de (Gatheral 2004) que busca solucionar o problema de restrição dos parâmetros do modelo para evitar a presença de arbitragem do tipo borboleta em um dado smile. Este modelo foi proposto por (Gatheral and Jacquier 2014) e extende o modelo SVI original apresentando duas outras parametrizações equivalentes e então o modelo para superfícies propriamente dito.

Reparametrizações equivalentes

Existem duas outras formas de se apresentar um modelo SVI que são equivalentes a parametrização RAW já apresentada. Estas são as parametrizações “Natural” e “Jump-Wings” que são apresentadas abaixo.

Para um dado conjunto de parâmetros \(\chi_N=\{\Delta, \mu, \rho, \omega, \zeta\}\) a parametrização natural de um SVI é dada por:

\[\begin{equation} w(k; \chi_N)=\Delta+\frac{\omega}{2}\left\lbrace 1+\zeta\rho(k-\mu)+\sqrt{(\zeta(k-\mu)+\rho)^2+(1-\rho^2)} \right\rbrace \tag{1} \end{equation}\]

onde \(\omega\geq 0\), \(\Delta, \mu \in \mathbb R\), \(|\rho|<1\) e \(\zeta>0\). A correspondência entre as parametrizações raw e natural é dada pelo seguinte mapeamento e seu inverso:

\[\begin{equation} (a, b, \rho, m, \sigma)=\left(\Delta+\frac{\omega}{2}(1-\rho^2), \frac{\omega\zeta}{2}, \rho, \mu-\frac{\rho}{\zeta}, \frac{\sqrt{1-\rho^2}}{\zeta}\right) \tag{2} \end{equation}\] \[\begin{equation} (\Delta, \mu, \rho, \omega, \zeta)=\left(a-\frac{\omega}{2}(1-\rho^2), m+\frac{\rho\sigma}{\sqrt{1-\rho^2}}, \rho, \frac{2b\sigma}{\sqrt{1-\rho^2}}, \frac{\sqrt{1-\rho^2}}{\sigma}\right) \tag{3} \end{equation}\]

A desvantagem destas parametrizações é que o valor de seus parâmetros não são intuitivos para os traders, eles não carregam estes valores em sua memória durante a negociação. Valores característicos de uma superfície de volatilidade implícita que traders têm em mente são, por exemplo, volatilidade ATM, skew de volatilidade ATM e assíntotas. Desta forma a parametrização Jump-Wings é útil, pois relaciona estes valores típicos aos parâmetros raw de um SVI.

A parametrização JW é dada em termos da variância implícita (e não da variância total) e portanto existe uma dependência explícita do tempo em sua formulação. Para um dado tempo até a expiração, \(\tau\), o conjunto de parâmetros \(\chi_{J}=\{v_\tau, \psi_\tau, p_\tau, c_\tau, \tilde v_\tau\}\) é definido pelas seguintes equações a partir dos parâmetros raw:

\[\begin{align} v_\tau&=\frac{a+b\{-\rho m + \sqrt{m^2+\sigma^2}\}}{\tau},\\ \psi_\tau&=\frac{1}{\sqrt{w_\tau}}\frac{b}{2}\left(-\frac{m}{\sqrt{m^2+\sigma^2}}+\rho\right),\\ p_\tau&=\frac{1}{\sqrt{w_\tau}}b(1-\rho),\\ c_\tau&=\frac{1}{\sqrt{w_\tau}}b(1+\rho),\\ \tilde v_\tau&=\frac{1}{\tau}\left(a+b\sigma\sqrt{1-\rho^2}\right) \tag{4} \end{align}\]

onde \(w_\tau=v_\tau \tau\) relaciona a variância total ATM com a variância ATM. Os parâmetros possuem as seguintes interpretações: \(v_\tau\) é a variância ATM, \(\psi_\tau\) o skew ATM, \(p_\tau\) a inclinação da asa esquerda (puts), \(c_\tau\) a inclinação da asa direita (calls) e \(\tilde v_\tau\) é a variância implícita mínima.

A figura 1 apresenta uma esquematização destes parâmetros sobre um smile fictício para melhor compreensão.

Interpretação dos parâmetros de um SVI-JW.

Figura 1: Interpretação dos parâmetros de um SVI-JW.

As relações inversas que trazem uma parametrização JW para uma raw, assumindo que \(m \neq 0\) são:

\[\begin{align} b&=\frac{\sqrt{w_\tau}}{2}(c_\tau+p_\tau),\\ \rho&=1-\frac{p_\tau\sqrt{w_\tau}}{b},\\ a&=\tilde v_\tau \tau-b\sigma\sqrt{1-\rho^2},\\ m&=\frac{(v_\tau-\tilde v_\tau)\tau}{b\left\lbrace-\rho+sign(\alpha)\sqrt{1+\alpha^2}-\alpha\sqrt{1-\rho^2}\right\rbrace},\\ \sigma&=\alpha m. \tag{5} \end{align}\]

onde as variáveis auxiliares são definidas da seguinte forma: \(\beta:=\rho-(2\psi_\tau\sqrt{w_\tau})/b\) e \(\alpha:=sign(\beta)\sqrt{1/\beta^2 – 1}\), com \(\beta \in [-1, 1]\) para garantir a convexidade do smile.

Se \(m=0\), então as equações para \(a, b, \rho\) se mantêm, porém, \(\sigma = (v_\tau \tau-a)/b\). Desta forma temos relações entre as três parametrizações SVI, sendo possível navegar entre elas com tranquilidade. Um trader pode verificar no mercado os valores dos parâmetros JW e traduzi-los para raw e simular o smile ou fazer o caminho reverso, calibrar uma fatia da superfície com parâmetros raw, traduzi-los para JW e apresentar para sua mesa, onde todos conseguirão interpretar os valores a que estão habituados.

Superfície SVI

Uma SSVI surge como uma extensão à parametrização natural de um SVI, e fornece em uma única equação, a possibilidade de parametrizar uma superfície de volatilidade implícita por inteiro. É necessário, antes de mais nada, fazer algumas definições preliminares. Defina a variância total implícita no dinheiro (ATM) como \(\theta_\tau:=\sigma_{BS}^2(0, \tau)\tau\) e \(\lim\limits_{\tau\rightarrow 0}\theta_\tau = 0\).

Definição 1 Seja \(\varphi\) uma função suave em \(\mathbb R_+^*\mapsto \mathbb R_+^*\) tal que \(\lim\limits_{\tau\rightarrow 0}\theta_\tau \varphi(\theta_\tau)\) exista em \(\mathbb R\). Uma SSVI é definida por:

\[\begin{equation} w(k, \theta_\tau)=\frac{\theta_\tau}{2}\left\lbrace 1+\rho\varphi(\theta_\tau)k+\sqrt{(\varphi(\theta_\tau)k+\rho)^2+(1-\rho^2)} \right\rbrace \tag{6} \end{equation}\]

Veja que na representação SSVI, engenhosamente os autores substituíram a dimensão de tempo, \(\tau\), típica de superfícies de volatilidde, pela variância total ATM. Com esta representação, eles conseguiram derivar as condições necessárias para a ausência de arbitragem estática na superfície e sempre que necessário, é possível retornar a dimensão de tempo no calendário.

Agora é necessário definir a função \(\varphi\), que então será substituída na equação (6) da definição 1 com seus próprios parâmetros e teremos por fim uma função \(w(k, \theta_\tau; \chi_{ssvi})\) que poderá ser calibrada para o conjunto de parâmetros da SSVI, \(\chi_{ssvi}\) contra os dados observados no mercado. No fundo, qualquer função que obedeça as condições impostas na definição 1 pode ser utilizada, entretanto os autores apresentam dois tipos de função que condizem com as observações empíricas.

Heston

Considere a função \(\varphi\) definida por:

\[\begin{equation} \varphi(\theta)\equiv\frac{1}{\gamma\theta}\left\lbrace 1-\frac{1-e^{-\gamma\theta}}{\gamma\theta}\right\rbrace \tag{7} \end{equation}\]

com \(\gamma > 0\). Esta função recebeu este nome pois, seu skew na variância implícita é compatível com aquele previsto no modelo de Heston.

Lei de potência

A parametrização da função \(\varphi\) como uma lei de potência é primeiramente considerada da seguinte forma: \(\varphi(\theta)=\eta\theta^{-\gamma}\) com \(\eta > 0\) e \(0< \gamma<1\). Entretanto, esta parametrização apresenta algumas limitações com relação a arbitragem do tipo borboleta e então é proposta a seguinte forma funcional:

\[\begin{equation} \varphi(\theta)=\frac{\eta}{\theta^\gamma(1+\theta)^{1-\gamma}} \tag{8} \end{equation}\]

que é garantida não possuir arbitragem estática dado que \(\eta(1+|\rho|)\leq 2\).

Condições de não-arbitragem

As condições para ausência de arbitragem estática para uma SSVI são colocadas através de dois teoremas (4.1 e 4.2) e provadas no artigo de (Gatheral and Jacquier 2014), dos quais resulta o seguinte corolário.

Corolário 1 A superfície SVI definida em 1 está livre de arbitragem estática se as seguintes condições são satisfeitas:

  1. \(\partial_\tau\theta_\tau\geq 0, \text{ para todo } \tau > 0\)
  2. \(0\leq \partial_\theta(\theta\varphi(\theta))\leq\frac{1}{\rho^2}\left(1+\sqrt{1-\rho^2}\right)\varphi(\theta), \text{ para todo } \theta>0\)
  3. \(\theta\varphi(\theta)(1+|\rho|)<4, \text{ para todo } \theta>0\)
  4. \(\theta\varphi(\theta)^2(1+|\rho|)\leq 4, \text{ para todo } \theta>0\)

Onde os dois primeiros itens dizem respeito a ausência de arbitragem de calendário, enquanto que os seguintes são exigências para a superfície estar livre de arbitragem do tipo borboleta.

Para uma função \(\varphi\) do tipo Heston, as condições nos seus parâmetros são: \(\gamma>0\) que garante o atendimentos as condições 1 e 2 do corolário 1 e \(\gamma\geq(1+|\rho|)/4\) para garantir a ausência de arbitragem borboleta, a qual subsume a primeira condição.

Para a função do tipo lei de potência dada em (8) são necessárias as condições \(0< \gamma<1\) e \(\eta(1+|\rho|)\leq 2\)

A maneira típica de impor as restrições dos parâmetros no momento da calibração do modelo é inserir uma penalidade na função objetivo, quando a restrição é violada. Por exemplo, consideramos a restrição de inequalidade para a lei de potência, \(\eta(1+|\rho|)-2\leq 0\). No momento da calibração, nós devemos calcular o valor desta expressão e se o seu resultado for maior que zero, uma penalidade é somada a função objetivo da calibração (em geral a soma dos quadrados dos erros).

Densidade neutra ao risco

Já comentamos sobre a distribuição neutra ao risco implícita no preço de opções que pode ser obtida através da fórmula de (Breeden and Litzenberger 1978), assim como já foi introduzida uma certa função \(g(k)\) que desempenha um papel fundamental para garantir a ausência de arbitragem do tipo borboleta em smiles de variância total. O fato é que, para garantir a ausência de arbitragem a função \(g(k)\) deve ser não negativa em todo o seu suporte \(k \in \mathbb R\). Ao mesmo tempo, a definição de ausência de arbitragem borboleta se confunde com o fato que a densidade neutra ao risco deve também ser não negativa, caso contrário não seria uma densidade de probabilidade. Logo percebe-se a estreita relação entre a função \(g(k)\) e a densidade neutra ao risco implícita no preço de opções. De fato, a fórmula de Breeden-Litzenberger nos fornece:

\[\begin{equation} p(k)=\left.\frac{\partial^2C_B(k, w(k))}{\partial K^2}\right|_{K=Fe^k} \end{equation}\]

que após fazer as derivações da equação de Black e as substituições e manipulações algébricas com as reparametrizações do modelo B&S, resulta em:

\[\begin{equation} p(k)=\frac{g(k)}{\sqrt{2\pi w(k)}}\exp\left(-\frac{d_2(k)^2}{2}\right) \tag{9} \end{equation}\]

E para relembrarmos, a função \(g(k)\) é dada por:

\[\begin{equation} g(k)=\left(1-\frac{kw\prime(k)}{2w(k)}\right)^2-\frac{w\prime(k)^2}{4}\left(\frac{1}{w(k)}+\frac{1}{4}\right)+\frac{w\prime\prime(k)}{2} \tag{10} \end{equation}\]

Ou seja, uma vez parametrizado um SVI para um dado prazo de maturidade, \(\tau\), se torna simples a tarefa de extrair a densidade implícita. Possuímos a função \(w(k)\) e suas derivadas e certamente \(d_2(k)\), bastando portanto, aplicar a equação (9) para extrair importante informação do mercado de opções.

Superfície de volatilidade local

De maneira semelhante ao procedimento realizado com a densidade implícita, também é possível, uma vez parametrizada a SSVI, derivar a superfície de volatilidade local através da equação de (Dupire 1994). Esta equação toma a seguinte forma funcional:

\[\begin{equation} \sigma_L^2(K, \tau)=\frac{\partial_\tau C_B(K, \tau)}{\frac{1}{2}K^2\partial_{KK}C_B(K, \tau)} \tag{11} \end{equation}\]

Novamente tomando as derivadas da equação de Black e fazendo as substituições necessárias1 chegamos a relação entre a superfície SVI e variância local.

\[\begin{equation} \sigma^2_L(k, \tau)=\frac{\partial_\tau w(k, \theta_\tau)}{g(k, w(k, \theta_\tau))} \tag{12} \end{equation}\]

De forma bastante simplista, a superfície de volatilidade local pode ser entendida como aquela superfície de volatilidades instantâneas para o ativo subjacente, \(\sigma(S, t)\) que depende tanto do nível de preço deste ativo quanto do tempo, e fornece a previsão do mercado para a volatilidade instantânea de \(S\) dado que este ativo hoje está precificado em \(S_0\) e no tempo futuro \(\tau\) estará em \(K\). Fazendo uma analogia com o mercado de juros, a superfície local está para a curva forward assim como a superfície implícita está para a curva de juros, numa aproximação.

A superfície local é muito utilizada para precificar opções exóticas, aquelas que possuem perfil de payoff distinto das opções europeias e podem ou não terem seus resultados atrelados ao caminho seguido pelo preço do ativo objeto durante a vida da opção. Nestes casos, a precificação se dá através da incorporação da superfície local estipulando um valor de volatilidade instantânea para cada possível combinação \((S_t, t)\) em geral em um ambiente de simulação de Monte Carlo.

No caso da equação (12) temos uma nova derivada a ser computada, \(\partial_\tau w(k, \theta_\tau)\), que só poderia ser feita de forma analítica caso \(\theta_\tau\) fosse parametrizada explicitamente. Nem sempre este é o caso, já que \(\theta_\tau\) são os valores de variância total ATM implícitas, ou seja, observa-se no mercado apenas alguns pontos de \(\theta_\tau\), pontos estes que podem estar espaçados em intervalos diferentes de tempo. A solução para esta derivação é interpolar estes pontos, nem que seja uma simples interpolação linear, e então fazer a derivação de forma numérica através de um método de diferenças finitas. Note que na interpolação deve-se garantir a condição de não arbitragem de calendário, \(\partial_\tau\theta_\tau\geq 0\).

Calibração

Vamos retomar nosso exemplo de superfície de volatilidade do artigo anterior, porém agora com todas as datas de expiração, ou seja, a superfície completa. Os códigos R apresentados abaixo ajudam na compreensão do procedimento.

library(readr)
library(dplyr)
library(purrr)
library(kableExtra)
library(ggplot2)
library(ggthemes)
library(plot3D)
source('svi.R')
source('ssvi.R')

Primeiramente foram carregados os pacotes necessários para a leitura e manipulação dos dados (readr, dplyr e purrr) assim como os pacotes de visualização (kableExtra, ggplot2, ggthemes e plot3D). Em seguida os arquivos svi.R e ssvi.R são implementações do Clube de Finanças para as funções necessárias para calibrar uma SSVI.

Carregados os pacotes e as funções, deve-se carregar os dados da superfície de volatilidade e organizá-los da forma que necessitamos.

ssvi_data <- read_csv("../../static/input/IV_Raw_Delta_surface.csv",
                     col_types = cols(date = col_date(format = "%m/%d/%Y"))) %>% 
  mutate(tau = period / 365,
         theta = theta_vec(moneyness, tau, iv)) %>% 
  rename(k = moneyness)

Para calibrar os parâmetros de uma SSVI, com a função \(\varphi\) do tipo lei de potência, necessitaremos dos dados de moneyness (\(k\)), vencimento (\(\tau\)) e volatilidade implícita (\(iv\)) que será internamente convertida em variância total implícita (\(w\)). Dentro da função de ajuste dos parâmetros fit_ssvi() a variância total ATM implícita \(\theta_\tau\) é calculada através de interpolação spline para cada uma das fatias da superfície, pois, nossos dados não necessariamente possuem esta observação. Cabe ressaltar também que os dados estão organizados de forma tidy, sendo portanto, todos os argumentos passados para as funções na forma de vetores, não sendo necessário gerar uma matriz contendo o grid \((k, \tau)\).

k <- ssvi_data$k
tau <- ssvi_data$tau
iv <- ssvi_data$iv
theta <- ssvi_data$theta

set.seed(12345)
powerlaw_par <- fit_ssvi(tau, k, iv, "powerlaw")
kable(powerlaw_par,
      caption = "Parâmetros da SSVI-power-law estimados.",
      col.names = "SSVI-PL")
Tabela 1: Parâmetros da SSVI-power-law estimados.
SSVI-PL
rho -0.6479238
gamma 0.4926757
eta 0.8607807

Podemos rapidamente checar se estes parâmetros estimados geram uma superfície livre de arbitragem.

paste("Parametrização livre de arbitragem borboleta? :", 
      ssvi_butterfly_cons(powerlaw_par, "powerlaw") <= 0)
## [1] "Parametrização livre de arbitragem borboleta? : TRUE"

Com os parâmetros estimados, é simples plotar todos os smiles que compõe a superfície e verificar visualmente o ajuste. Vamos plotar a variância total em função do moneyness e vencimentos, pois neste gráfico se verifica a condição de arbitragem de calendário simplesmente através do fato que as curvas geradas não devem se cruzar.

plt_df <- ssvi_data %>% 
  mutate(w_pl = ssvi_fun(powerlaw_par, theta, k)) %>% 
  select(k, tau, w_pl, iv) %>% 
  filter(tau < 0.5)

ggplot(plt_df, aes(x = k, y = w_pl)) + 
  geom_line(aes(color = as.factor(format(tau, digits = 3)))) +
  geom_point(aes(y = iv^2 * tau)) +
  guides(color = guide_legend(title = "Vencimento")) +
  labs(title = "SSVI Lei de Potência",
       x = "Forward log-moneyness (k)",
       y = "Variância total implícita (w)",
       caption = "Elaborado por Rafael Bressan para o Clube de Finanças.") +
#  scale_y_continuous(labels = scales::percent) +
  scale_color_viridis_d() +
  theme_economist_white()

Foram retirados os vencimentos mais longos apenas para uma melhor visualização da parte mais curta da superfície, que em geral é a mais complicada de se calibrar através de SVI. O resultado parece interessante, com as variâncias ao redor do dinheiro tendo boa aderência aos dados observados, porém para puts muito fora do dinheiro, a parametrização aparenta subestimar o valor da variância total e portanto estaria subprecificando as opções.

Iremos agora verificar a densidade da distribuição implícita para o período de vencimento de 90 dias. Utiliza-se para tanto a equação (9) onde \(w(k)\) (e suas derivadas e o próprio \(d_2\)) será agora calculado com base nos parâmetros da tabela 1 para um vetor de moneyness mais amplo e denso. O resultado pode ser observado através da figura 2

thetadens <- ssvi_data %>% 
  filter(period == 90) %>% 
  pull(theta) %>% 
  `[`(1)
kdens <- seq(-0.5, 0.3, length.out = 100)
dens <- ssvi_density(powerlaw_par, thetadens, kdens, "powerlaw")
dens_tbl <- tibble(kdens = kdens, dens = dens)

ggplot(dens_tbl, aes(x = kdens, y = dens)) + 
  geom_line() +
  labs(title = "Densidade neutra ao risco SSVI",
     x = "Forward log-moneyness (k)",
     y = "Densidade",
     caption = "Elaborado por Rafael Bressan para o Clube de Finanças.") +
  scale_color_viridis_d() +
  theme_economist_white()
Densidade implícita estimada a partir da SSVI. Presença de assimetria e leptocurtose a esquerda.

Figura 2: Densidade implícita estimada. Presença de assimetria e leptocurtose a esquerda.

Este é um gráfico interessante, que nos mostra exatamente o que se espera de um smile típico de equities que possui skew negativo. Percebemos como a densidade de probabilidades é assimétrica, com a cauda esquerda muito mais longa, refletindo o sentimento de mercado de uma maior probabilidade de grandes quedas no preço do ativo objeto que altas equivalentes. Sempre que verificamos um smile com skew negativo, como é o presente caso, a distribuição de probabilidades é assimétrica a esquerda.

Vamos conferir se a área sob esta curva de densidade integra aproximadamente 1, como deve ser.

area <- integrate(function(x) ssvi_density(powerlaw_par, thetadens, x, "powerlaw"),
                  lower = kdens[1],
                  upper = kdens[length(kdens)])
paste("Área sob a curva de densidade é: ", area$value)

[1] “Área sob a curva de densidade é: 0.999302879362191”

Chegou o momento de inferirmos a superfície de volatilidade local a partir de nossa parametrização SSVI. O método será a aplicação direta da equação (12) pois, com a parametrização realizada, dispomos de todos os dados necessários para seu cômputo.

Antes porém, devemos observar uma peculiaridade dos nossos dados. O site ivolatility.com fornece dados alinhados por Delta, ou seja, para cada período de vencimento temos um mesmo conjunto de Deltas, mas não de moneyness. Os valores deste último irá variar conforme o vencimento, uma vez que pela definição de forward log-moneyness que vimos utilizando é dependente do tempo para maturidade da opção. Desta forma precisamos gerar um novo grid \((k, \tau)\) para plotar nossa superfície de volatilidade local.

Para tanto, criaremos uma sequência uniforme de valores de \(k\) e tomaremos os valores que já possuímos de \(\tau\) e \(\theta_\tau\) recombinando-os através da função expand.grid() para gerar o data frame que precisamos.

Feito isso, é apenas questão de aplicar a equação (12) e criar uma matriz (pois assim pede a função surf3D()) com os valores da volatilidade local.

kloc <- seq(-.4, 0.4, length.out = 17)
utau <- unique(tau)
utheta <- unique(theta)
names(utheta) <- utau  # utheta will be a lookup vector
grid_df <- expand.grid(kloc, utau) %>% 
  rename(kloc = Var1,
         tau = Var2) %>% 
  mutate(theta = utheta[as.character(tau)])

loc_vol_vec <- ssvi_local_vol(powerlaw_par, 
                              grid_df$tau, 
                              grid_df$theta, 
                              grid_df$kloc, 
                              "powerlaw")
# Matrix where k is row
loc_vol_m <- matrix(loc_vol_vec, nrow = length(kloc))  

# Plot Local Volatility Surface
# x is k, y is tau
M <- mesh(kloc, utau)
surf3D(M$x, M$y, loc_vol_m, colkey = FALSE, bty = "b2", 
       phi = 20, ticktype = "detailed",
       xlab = "k",
       ylab = "\u03c4",
       zlab = "Volatilidade local \u03c3")

Conclusão

Apresentamos o modelo de superfícies SVI, que faz uma generalização dos smiles SVI e apresenta vantagens sobre a parametrização fatia-a-fatia em virtude dos teoremas sobre arbitragem estática, apresentando restrições para os parâmetros do modelo que garantem a ausência deste tipo de arbitragem.

Uma vez parametrizada toda uma SSVI, torna-se simples, uma mera aplicação de fórmulas a obtenção tanto da densidade da distribuição neutra ao risco implícita no preços das opções, como da superfície de volatilidade local através da equação de Dupire.

Referências

Breeden, Douglas T, and Robert H Litzenberger. 1978. “Prices of State-Contingent Claims Implicit in Option Prices.” Journal of Business. JSTOR, 621–51.

Dupire, Bruno. 1994. “Pricing with a Smile.” Risk 7 (1): 18–20.

Gatheral, Jim. 2004. “A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation of Volatility Derivatives.” Presentation at Global Derivatives & Risk Management, Madrid.

Gatheral, Jim, and Antoine Jacquier. 2014. “Arbitrage-Free Svi Volatility Surfaces.” Quantitative Finance 14 (1). Taylor & Francis: 59–71.

  • Referimos o leitor ao material do prof. Antoine Jacquier para uma prova desta relação aqui

    Posted by Rafael Bressan in Derivativos & Riscos, 0 comments
    Calibrando um SVI

    Calibrando um SVI

    Neste post iremos mostrar como fazer uma calibração de um smile SVI baseado nos trabalhos de (Gatheral 2004) e (De Marco and Martini 2009). Escolheremos apenas uma fatia da superfície de volatilidade, fixando o tempo para expiração (maturidade) e coletando as volatilidades implícitas para diversos strikes.

    Como já apresentado em posts anteriores, existem diversas formas de interpolar, extrapolar, parametrizar e calibrar smiles de volatilidade. Exsitem vantagens e desvantagens para cada método. Neste post iremos fixar nossa atenção no modelo paramétrico de smile chamado SVI – Stochastic Volatility Inspired – uma forma que une a “simplicidade” de um modelo paramétrico com o poder de adesão aos dados de mercado dos modelos de volatilidade estocástica (i.e. Heston, SABR e afins).

    Chamar o modelo SVI de simples é puro eufemismo, ele é um modelo poderoso, com fundamento teórico avançado e diversos detalhes para sua calibração.

    Modelo SVI

    Este modelo foi apresentado por Jim Gatheral na conferência Global Derivatives & Risk Management 2004 e foi bem recebido pelos profissionais de mercado interessados em superfícies de volatilidade para equities, principalmente.

    O modelo possui duas propriedades que são as razões para sua popularidade. Ele satisfaz a fórmula do momento de Lee (2004), que é um resultado independente de modelo que especifica os limites assintóticos para um smile de volatilidade implícita. Portanto, o modelo SVI é válido para extrapolação além da região central dos dados disponíveis. Além disso, afirma-se que o modelo SVI é relativamente fácil de calibrar para dados de mercado, de modo que a superfície de volatilidade implícita correspondente é livre de arbitragem de calendário. As condições que garantem a ausência de arbitragem de borboleta forma resolvidas em um segundo artigo por Gatheral and Jacquier (2014).

    No SVI é possível se estabelecer condições explícitas em seus parâmetros, de modo que o modelo não gere preços onde oportunidades de arbitragem estáticas possam ocorrer. A calibração para dados reais de mercado requer algoritmos de otimização não-linear e pode ser bastante demorada. Mais recentemente, um método para calibração que usa a estrutura inerente do modelo para reduzir as dimensões do problema de otimização foi desenvolvido em De Marco and Martini (2009).

    A parametrização conhecida como RAW do SVI é apresentada na equação (1), seguindo a notação já introduzida anteriormente, portanto, estamos modelando a variância total implícita para um determinado prazo. Para diferentes maturidades, teremos diferentes conjuntos de parâmetros.

    \[\begin{equation} w(k) = a + b\left(\rho(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right) \tag{1} \end{equation}\]

    onde: \(a \in \mathbb R\), \(b \geq 0\), \(|\rho| < 1\), \(m \in \mathbb R\), \(\sigma > 0\), e \(a+b \sigma\sqrt{1 − \rho^2} \geq 0\) para garantir que \(\min w(k)>0, \, \forall k \in \mathbb R\).

    Restrições de não-arbitragem

    Antes de demonstrar a restrição imposta aos parâmetros \(b\) e \(\rho\) em função dos limites de inclinação das asas do smile, vamos derivar as expressões para \(w\prime(k)\) e \(w\prime\prime(k)\) que nos serão úteis na demonstração.

    A expressão para \(w\prime(k)\) é bastante simples:

    \[\begin{equation} w\prime(k) = b \left[\rho + \frac{(k-m)}{\sqrt{(k-m)^2+\sigma^2}}\right] \tag{2} \end{equation}\]

    Derivando novamente a equação (2) em relação a \(k\) teremos uma expressão ainda mais simples, mesmo que após alguma manipulação algébrica um tanto tediosa1, e resulta em:

    \[\begin{equation} w\prime\prime(k)=\frac{b\sigma^2}{[(k-m)^2+\sigma^2]^{3/2}} \tag{3} \end{equation}\]

    onde, se considerarmos \(b>0\) temos que \(w\prime\prime(k)>0, \,\forall k\in \mathbb R\), ou seja, o smile de volatilidade definido pela equação (1) é estritamente convexo.

    Rogers and Tehranchi (2010) definiram os limites possíveis para a inclinação das asas em função do tempo para expiração, provando que o smile tende a ficar mais horizontal a medida que o prazo aumenta. Este limite pode ser escrito da seguinte forma e é uma condição necessária para a ausência de arbitragem:

    \[\begin{equation} |w\prime(k)|\leq \frac{4}{\tau} \qquad \forall k \in \mathbb R, \quad \forall \tau \in (0, \infty) \tag{4} \end{equation}\]

    Sendo o smile convexo, suas máximas inclinações ocorrem quando \(k\rightarrow \pm \infty\). Portanto, deve-se avaliar a restrição dada pela equação (4) nestes limites da seguinte maneira:

    \[\begin{align} \lim\limits_{k\rightarrow\infty}w\prime(k)&=b(1+\rho)\geq 0\\ \lim\limits_{k\rightarrow-\infty}w\prime(k)&=-b(1-\rho)\leq 0 \end{align}\]

    que satisfazendo estas duas relações ao mesmo tempo em que se restringe os parâmetros \(b\) e \(\rho\) através da inequalidade de Rogers e Tehranchi nos garante o seguinte resultado para um SVI livre de arbitragem de travas.

    \[\begin{equation} b(1+|\rho|)\leq\frac{4}{\tau} \tag{5} \end{equation}\]

    Para garantir que a superfície gerada está livre de arbitragem do tipo borboleta deve-se primeiramente definir uma função2 \(g: \mathbb R\rightarrow \mathbb R\), tal que:

    \[\begin{equation} g(k)=\left(1-\frac{kw\prime(k)}{2w(k)}\right)^2-\frac{w\prime(k)^2}{4}\left(\frac{1}{w(k)}+\frac{1}{4}\right)+\frac{w\prime\prime(k)}{2} \tag{6} \end{equation}\]

    e seguir o lema :

    Lema 1 Uma fatia da superfície de volatilidade está livre de arbitragem do tipo borboleta se, e somente se, \(g(k) \geq 0\) para todo \(k \in \mathbb R\) e \(\lim\limits_{k\rightarrow+\infty}d_1(k)=-\infty\).

    Infelizmente, a natureza altamente não-linear da função \(g(k)\) impossibilita a derivação de restrições gerais aos parâmetros do SVI. A forma mais simples de eliminar arbitragem do tipo borbobleta é incluir a restrição \(g(k) \geq 0\) na função perda e proceder com a calibração dos parâmetros.

    Reparametrização Quasi-explicit

    Um dos problemas mais marcantes com a calibração do SVI dado pela equação (1) é sua natureza altamente não-linear que gera inúmeros pontos de mínimo locais. Mesmo em um ambiente simulado, um típico otimizador de mínimos quadrados como Levenberg-Marquardt não consegue chegar ao mínimo global, onde a função perda é igual a zero. A solução encontrada é dependente dos valores iniciais inputados ao otimizador e a robustez do conjunto de parâmetros encontrados não é garantida.

    Uma forma de contornar este problema pode ser a utilização de otimizadores globais, como algortimos genéticos, em um primeiro estágio e então o refinamento desta solução através de um otimizador local (LM, por exemplo).

    Outra forma, adotada em De Marco and Martini (2009) é a reparametrização da equação (1) de forma que esta possa ser tratada como um prolema linear. Para tanto, considere a seguinte troca de variáveis:

    \[\begin{equation} y = \frac{k-m}{\sigma} \end{equation}\]

    então a parametrização RAW do SVI se torna.

    \[\begin{equation} w(y) = a + b\sigma\left(\rho y + \sqrt{y^2 + 1}\right) \end{equation}\]

    Definindo agora as seguintes variáveis reparametrizadas é possível reduzir a dimensão de parâmetros de um SVI de 5 para apenas 3:

    \[\begin{align} c = &b\sigma\\ d = &\rho b \sigma \end{align}\] \[\begin{equation} w(y)=a+dy+c\sqrt{y^2+1} \tag{7} \end{equation}\]

    Portanto, para um par fixo de \((m, \sigma)\) nosso problema reduzido é:

    \[\begin{equation} P_{m, \sigma}:=\min\limits_{a, c, d \in D}f_y(a, c, d) \tag{8} \end{equation}\]

    onde \(f_y(\cdot)\) é a função objetivo da reparametrização, e é dada pela seguinte equação:

    \[\begin{equation} f_y(a, c, d)=\sum_{i=1}^{n}\left[w(y_i)-\tilde w_i\right]^2 \tag{9} \end{equation}\]

    onde \(\tilde w_i\) é a variância total observada correspondente ao moneyness \(k_i\).

    O domínio \(D\) dos parâmetros \(\{a, c, d\}\) é encontrado a partir do limite imposto por (5).

    \[\begin{equation} D = \begin{cases} 0 \leq c \leq 4\sigma\\ |d| \leq c \quad \text{e}\quad |d| \leq 4\sigma – c\\ 0 \leq a \leq \max\{\tilde w_i\}\\ \end{cases} \tag{10} \end{equation}\]

    O problema reduzido dado pela equação (8), é um típico problema de mínimos quadrados com restrições lineares. Este problema, por ser convexo, admite uma única solução interior (se existente) que será o mínimo global para este problema e é encontrada através do gradiente da função objetivo igualando-o a zero, \(\nabla f_y = 0\). Esta equação gera um sistema linear nos parâmetros \(a, c, d\) que pode ser explicitamente resolvido. Caso a solução encontrada para este problema esteja contida no domínio \(D\), esta solução é interior e é o mínimo desejado, caso contrário, deve-se percorrer o perímetro do domínio e encontrar o menor valor da função objetivo que será uma solução de canto.

    Seja \((a^*, c^*, d^*)\) a solução de (8) e \((a^*, b^*, \rho^*)\) os correspondentes parâmetros originais recuperados, então o problema completo de calibração é:

    \[\begin{equation} P:=\min\limits_{m, \sigma}\sum_{i=1}^n (w_*(k_i)-\tilde w_i)^2 \tag{11} \end{equation}\]

    onde \(w_*(k)=a^*+b^*\left(\rho^*(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right)\).

    O problema completo, (11) é um problema em apenas duas dimensões, \((m, \sigma)\) e não-linear, que deve ser abordado através de algum tipo de otimizador global.

    Solução explícita do problema reduzido

    Nesta seção apresentaremos a solução, sem considerar as restrições impostas em (10) para o problema reduzido em (8), algo omitido em De Marco and Martini (2009). Esta seção é opcional para o leitor atento que já percebeu a semelhança entre o problema reduzido e um típico problema de regressão linear múltipla.

    Para encontrar o conjunto de parâmetros \((a^*, c^*, d^*)\) que representam os valores ótimos na equação (8), devemos resolver o seguinte sistema de equações:

    \[\begin{equation} \nabla f_y = \left[ \begin{array}{c} \partial f_y / \partial a\\ \partial f_y / \partial d\\ \partial f_y / \partial c \end{array} \right] = \boldsymbol{0} \tag{12} \end{equation}\]

    Cada uma das derivadas parciais da equação acima quando igualadas a zero dão origem ao sistema linear apresentado abaixo:

    \[\begin{equation} \scriptsize \begin{bmatrix} &n &\sum y_i &\sum\sqrt{y_i^2+1}\\ &\sum y_i &\sum y_i^2 &\sum(y_i\sqrt{y_i^2+1})\\ &\sum\sqrt{y_i^2+1} &\sum(y_i\sqrt{y_i^2+1}) &\sum(y_i^2+1)\\ \end{bmatrix} \cdot \begin{bmatrix} a \\ d \\ c \end{bmatrix} = \begin{bmatrix} \sum\tilde w_i \\ \sum \tilde w_i y_i \\ \sum(\tilde w_i\sqrt{y_i^2+1}) \end{bmatrix} \tag{13} \end{equation}\]

    Portanto, o problema reduzido pode ser resolvido através de um sistema linear de ordem 3 sob restrições também lineares.

    Algoritmo

    A otimização para encontrar os parâmetros ótimos de um SVI dadas observações de mercado e a técnica de calibração Quasi-explicit de De Marco and Martini (2009) pode ser resumida nos seguintes passos:

    1. Definir valores iniciais para os parâmetros \((m, \sigma)\),

    2. Iniciar algum otimizador global com estes parâmetros e resolver o problema completo (11)

      2.1 Dentro da otimização global, resolver o problema reduzido (8) para os parâmetros \((m, \sigma)\) dados,

    3. Na convergência do problema completo do passo 2, otimizar uma última vez o problema reduzido,

    4. Recuperar os parâmetros \((a, b, \rho, m, \sigma)\)

    A escolha dos otimizadores fica a cargo pessoal, sendo sugerido testar vários para o mesmo problema. Eventualmente, para um determinado smile um otimizador pode se mostrar melhor que outro que vinha sendo utilizado em outras ocasiões.

    Nos testes realizados pelo Clube de Finanças, entre os otimizadores globais para o problema completo utilizamos Algoritmos Genéticos, Nelder-Mead restrito e um Método não-linear generalizado. Para o problema reduzido, apesar de ser linear, o método de Nelder-Mead restrito se mostrou tão eficiente quanto e de mais fácil implementação. Se o objetivo for fazer uma calibração direta, dos cinco parâmetros ao mesmo tempo, uma combinação de otimizador global em primeiro estágio e o método de Levenberg-Marquardt restrito para refinamento da solução é o ideal.

    Resultados

    A seguir apresentamos um smile de referência para a calibração, obtido de ivolatility.com e então partimos para diferentes técnicas de calibração de um SVI. Os códigos em R também estão apresentados ao longo do texto para melhor compreensão e estudo do leitor.

    Os dados utilizados neste exemplo estão apresentados na tabela 1 abaixo. Esta é uma típica apresentação de um slice de superfície, ou seja, dados para um smile apenas. As principais variáveis são: a data em que os dados foram coletados (date), o preço de fechamento do ativo (stock_price), o prazo para expiração em dias (period), e medidas de moneyness como delta, strike e o próprio moneyness, além é claro da volatilidade implícita (iv) retirada do mercado.

    Tabela 1: Dados reais para exemplo de calibração de uma SVI.
    date symbol exchange stock_price_for_iv period delta moneyness strike iv
    2017-09-21 IWM NYSEArca 143.73 30 10 0.03 148.41 0.09
    2017-09-21 IWM NYSEArca 143.73 30 15 0.03 147.49 0.09
    2017-09-21 IWM NYSEArca 143.73 30 20 0.02 146.80 0.09
    2017-09-21 IWM NYSEArca 143.73 30 25 0.02 146.21 0.09
    2017-09-21 IWM NYSEArca 143.73 30 30 0.01 145.69 0.09
    2017-09-21 IWM NYSEArca 143.73 30 35 0.01 145.19 0.10
    2017-09-21 IWM NYSEArca 143.73 30 40 0.01 144.69 0.10
    2017-09-21 IWM NYSEArca 143.73 30 45 0.00 144.18 0.10
    2017-09-21 IWM NYSEArca 143.73 30 50 0.00 143.66 0.10
    2017-09-21 IWM NYSEArca 143.73 30 55 0.00 143.12 0.11
    2017-09-21 IWM NYSEArca 143.73 30 60 -0.01 142.53 0.11
    2017-09-21 IWM NYSEArca 143.73 30 65 -0.01 141.88 0.11
    2017-09-21 IWM NYSEArca 143.73 30 70 -0.02 141.13 0.12
    2017-09-21 IWM NYSEArca 143.73 30 75 -0.02 140.26 0.13
    2017-09-21 IWM NYSEArca 143.73 30 80 -0.03 139.16 0.13
    2017-09-21 IWM NYSEArca 143.73 30 85 -0.04 137.66 0.14
    2017-09-21 IWM NYSEArca 143.73 30 90 -0.06 135.32 0.16

    Esta tabela poderia conter (de fato contém no arquivo original) outros períodos de expiração, e neste caso uma das colunas de moneyness começa a se repetir, no caso seria o delta pois baixamos uma tabela de volatilidades implícitas por delta. Assim, em uma tabela simples em formato tidy é possível armazenar informações de uma superfície inteira, a qual de outra forma necessitaria de um arranjo em 3 dimensões.

    Ressaltamos aqui que a unidade de volatilidade implícita está em percentuais ao ano, equanto que nosso período é de dias corridos. É necessário harmonizar estas medidas de forma que, para volatiliades dadas em percentual ao ano, o período também seja dado em anos. Logo nosso \(\tau = 30/365\), ou seja, 0.08219.

    Demonstraremos aqui os resultados para a calibração de uma RAW SVI pelos métodos “Direto”, “GA”, “Quasi-NM” e “Quasi-PQ”, abaixo explicados.

    O método “Direto” é uma calibração direta através de um algoritmo de Levenberg-Marquardt da equação (1), ou seja, não existe reparametrização Quasi-explicit e o problema resolvido é não-linear em 5 dimensões. São realizadas 10 calibrações com estimativas iniciais dos parâmetros aleatórias, mas dentro de seus respectivos domínios. A melhor solução, aquela com o menor valor para a função objetivo, é selecionada. Todos os outros métodos utilizam a reparametrização, ocorrendo variações apenas nos algoritmos de otimização utilizados nos problemas reduzido e completo.

    A calibração “GA” faz uso do otimizador global de algoritmos genéticos para o problema completo, ou seja, para estimar o par \((m, \sigma)\) que corresponde ao mínimo global. Após, o problema reduzido é resolvido através do algoritmo de Nelder-Mead. Este método é robusto, pois o algoritmo genético tem grande probabilidade de encontrar a região onde se encontra o mínimo global e não ficar preso localmente. Entretanto a robustez ocorre as expensas do tempo de computação.

    Os métodos ditos “Quasi” diferem entre si na resolução do problema reduzido. Enquanto “PQ” remete a programação quadrática e faz uso da resolução do sistema linear apresentado na equação (13) com as restrições impostas por (10), o método “Quasi-NM” utiliza o método de Nelder-Mead com restrições para a resolução deste mesmo problema reduzido. Em ambos os métodos, o problema completo é resolvido com um algoritmo de Nelder-Mead com 50 reinicializações das estimativas iniciais dos parâmetros \((m, \sigma)\), o que causa algum impacto no tempo de computação destes métodos.

    smile <- dados %>% 
      mutate(tau = period / 365) %>% 
      select(moneyness, iv, tau)
    
    par_names <- factor(c("a", "b", "$\\rho$", "m", "$\\sigma$"),
                        levels = c("a", "b", "$\\rho$", "m", "$\\sigma$"))
    k <- smile$moneyness
    w <- smile$iv^2 * smile$tau
    
    init_direct <- proc.time()
    par_direct <- svi_fit_direct(k, w)
    end_direct <- proc.time()
    time_direct <- end_direct - init_direct 
    
    init_ga <- proc.time()
    par_ga <- svi_fit_ga(k, w)
    end_ga <- proc.time()
    time_ga <- end_ga - init_ga 
    
    init_quasipq <- proc.time()
    par_quasipq <- svi_fit_quasi(k, w, inner = "quadprog")
    end_quasipq <- proc.time()
    time_quasipq <- end_quasipq - init_quasipq 
    
    init_quasinm <- proc.time()
    par_quasinm <- svi_fit_quasi(k, w)
    end_quasinm <- proc.time()
    time_quasinm <- end_quasinm - init_quasinm 
    
    iv_direct <- sqrt(svi_fun(par_direct$par[[1]], k) / smile$tau)
    iv_ga <- sqrt(svi_fun(par_ga$par[[1]], k) / smile$tau)
    iv_quasipq <- sqrt(svi_fun(par_quasipq$par[[1]], k) / smile$tau)
    iv_quasinm <- sqrt(svi_fun(par_quasinm$par[[1]], k) / smile$tau)
    
    plot_tbl <- tibble(k = k,
                  Direct = iv_direct,
                  GA = iv_ga,
                  QuasiPQ = iv_quasipq,
                  QuasiNM = iv_quasinm,
                  observed = smile$iv) %>% 
      gather(key = method, value = iv, -c(k, observed))
    
    par_tbl <- bind_rows(par_direct, par_ga, par_quasipq, par_quasinm) %>% 
      select(method, par) %>% 
      unnest() %>% 
      mutate(names = rep(par_names, 4)) %>% 
      spread(method, par) %>% 
      select(names, Direct, GA, QuasiPQ, QuasiNM) %>% 
      mutate(names = as.character(names)) %>% 
      mutate_at(vars(Direct:QuasiNM), arred)
    
    rmse_tbl <- bind_rows(par_direct, par_ga, par_quasipq, par_quasinm) %>% 
      select(method, par) %>% 
      unnest() %>% 
      group_by(method) %>% 
      summarise(RMSE = rmse(par, k, w)) %>% 
      spread(method, RMSE) %>% 
      mutate(names = "RMSE") %>% 
      select(names, Direct, GA, QuasiPQ, QuasiNM) %>% 
      mutate_at(vars(Direct:QuasiNM), format, digits = 3, scientific = TRUE)
    
    time_tbl <- tibble(method = c("Direct", "GA", "QuasiPQ", "QuasiNM"),
                       time = rbind(time_direct, time_ga, 
                                    time_quasipq, time_quasinm)[, 3]) %>% 
      spread(method, time) %>% 
      mutate(names = "Tempo") %>% 
      select(names, Direct, GA, QuasiPQ, QuasiNM) %>% 
      mutate_at(vars(Direct:QuasiNM), arred)
    
    frame_tbl <- bind_rows(par_tbl, rmse_tbl, time_tbl)

    Abaixo é apresetanda uma tabela com os valores estimados para os parâmetros da SVI, o RMSE (root mean square error) e o tempo total em segundos para a calibração. Aqui o RMSE é definido como \(\sqrt{1/n\sum(w(k_i)-\tilde w_i)^2}\) e nos fornece um valor típico de erro na variância.

    kable(frame_tbl,
          col.names = c("Estimativa", "Direto", "GA", 
                        "QuasiPQ", "QuasiNM"),
          caption = "Parâmetros estimados da calibração, RMSE e tempo de computação em segundos.") %>% 
      kable_styling(bootstrap_options = "striped",
                    font_size = 20,
                    full_width = FALSE)
    Tabela 2: Parâmetros estimados da calibração, RMSE e tempo de computação em segundos.
    Estimativa Direto GA QuasiPQ QuasiNM
    a 0.00000 0.00000 0.00000 0.00011
    b 0.01964 0.01952 0.01651 0.01870
    \(\rho\) -0.81157 -0.80220 -1.00000 -0.90090
    m -0.00861 -0.00773 -0.01131 -0.01145
    \(\sigma\) 0.05101 0.05039 0.07100 0.05027
    RMSE 8.71e-06 8.68e-06 9.62e-05 1.02e-05
    Tempo 0.11800 24.93800 0.14100 5.94600

    O método Direto, com algoritmo de Levenberg-Marquardt se mostrou muito mais rápido que os demais, principalmente com relação ao algoritmo genético, e com um bom ajuste dado o baixo valor de RMSE. O algoritmo genético é consideravelmente mais lento, entretanto durante as várias calibrações realizadas em testes (e que não estão apresentadas na tabela 2), este algoritmo sempre se mostrou robusto, com baixo RMSE, diferentemente dos outros métodos que por vezes, denpendendo das estimativas iniciais, podem convergir para um mínimo local.

    O gráfico com os ajustes realizados pode ser observado abaixo.

    ggplot(plot_tbl, aes(x = k)) + 
      geom_point(aes(y = observed)) +
      geom_line(aes(y = iv, color = method)) +
      guides(color = guide_legend(title = "")) +
      labs(title = "",
           x = "Forward log-moneyness",
           y = "Volatility",
           caption = "") +
      scale_y_continuous(labels = scales::percent) +
      scale_color_viridis_d() +
      theme_economist_white()
    Comparação entre diferentes métodos de calibração de uma SVI.

    Figura 1: Comparação entre diferentes métodos de calibração de uma SVI.

    De fato o método direto e o método Quasi-explicit com otimizador global do tipo algoritmo genético se mostram mais adequados para a calibração de um SVI. Enquanto o método direto é muito mais eficiente em termos computacionais, o método Quasi-explicit com GA é mais robusto. Desta forma, deve-se salientar que é necessário que o usuário, ao fazer uma calibração de smile de volatilidade, deve dispor de diferentes métodos de fazê-lo, e a inspeção visual do resultado é obrigatória para determinar qual método foi mais eficiente em ajustar a curva aos dados.

    Conclusão

    Apesar de neste exemplo ter se mostrado um método efetivo, com bom ajuste e baixo tempo de calibração, o método direto é altamente dependente dos valores iniciais dos parâmetros. Para tornar este método mais robusto, um número maior de reinicializações deve ser feita o que penaliza o tempo de calibração. O método Quasi-explicit com algoritmo genético para encontrar a região de \((m, \sigma)\) onde se encontra o mínimo global se mostrou bastante robusta, entretanto, de convergência lenta. Para ajustar apenas um smile alguns segundos a mais não representam problema. Porém, se imaginarmos que em uma grande instituição financeira são necessárias calibrações de, talvez, milhares de smiles representando inúmeras superfícies de diversos instrumentos, este método pode se mostrar computacionalmente caro.

    Já os métodos Quasi-explicit que utilizam um algoritmo de Nelder-Mead para a resolução do problema completo se mostraram muito sensíveis às estimativas iniciais dos parâmetros. Mesmo utilizando 50 reinicialzações do método, diversas vezes o ajuste realizado foi insatisfatório. A resolução através de programação quadrática é rápida, se comparada com NM, entretanto, quando as restrições impostas pela equação (10) se tornam ativas, este método parece sofrer com algum viés em sua solução.

    Referências

    De Marco, S, and C Martini. 2009. “Quasi-Explicit Calibration of Gatheral’s Svi Model’.” Zeliade White Paper, 1–15.

    Gatheral, Jim. 2004. “A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation of Volatility Derivatives.” Presentation at Global Derivatives & Risk Management, Madrid.

    Gatheral, Jim, and Antoine Jacquier. 2014. “Arbitrage-Free Svi Volatility Surfaces.” Quantitative Finance 14 (1). Taylor & Francis: 59–71.

    Lee, Roger W. 2004. “The Moment Formula for Implied Volatility at Extreme Strikes.” Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 14 (3). Wiley Online Library: 469–80.

    Rogers, Leonard CG, and MR Tehranchi. 2010. “Can the Implied Volatility Surface Move by Parallel Shifts?” Finance and Stochastics 14 (2). Springer: 235–48.

  • A resolução desta derivada é uma simples regra da divisão, entretanto a simplificação do resultado pede alguma manipulação algébrica. É possível utilizar sistemas de computação simbólica, o qual recomendamos o SymPy

  • Condições para ausência de arbitragem do tipo borboleta em um SVI estão detalhadas na seção 2.2 do artigo de Gatheral and Jacquier (2014).

    Posted by Rafael Bressan in Derivativos & Riscos, 0 comments
    Métodos de calibração de superfícies de volatilidade

    Métodos de calibração de superfícies de volatilidade

    2019/02/08

    Métodos de calibração são as diferentes formas existentes entre “interpolação”, “suavização” e “parametrização” que podem ser utilizadas para fazer o ajustes dos dados obtidos do mercado de opções às superfícies de volatilidade.

    Como já apresentado em artigos anteriores, existem diversas formas de interpolar, extrapolar, parametrizar e calibrar smiles de volatilidade. Existem vantagens e desvantagens para cada método.

    Calibração versus Interpolação

    Uma forma simples de gerar um smile de volatilidade a partir de dados observados no mercado é a interpolação destes dados. Diversas formas de interpolação existem, sendo talvez a mais conhecida a spline cúbica. Não é a proposta deste artigo detalhar os procedimentos de interpolação, restando saber que em tal procedimento é gerada uma função contínua em partes (piecewise) que passa por todos os pontos observados.

    Uma interpolação força a passagem da função interpolada em todos os seus pontos de referência, como se estivesse ligando estes pontos em um desenho a mão livre. Portanto, nestes pontos o erro da interpolação é zero por definição, entretanto em pontos intermediários podem surgir erros, inclusive aqueles que possibilitam a existência de arbitragem entre strikes de um mesmo smile1.

    Em contraposição a métodos de interpolação, podem ser derivados métodos de suavização (smoothing) ou então a parametrização do smile de volatilidade. Seja suavização, ou parametrização, estes métodos não forçam a passagem da função que representa o smile pelos pontos de mercado, mas buscam minimizar alguma função perda dos desvios em relação a estes pontos ao mesmo tempo em que buscam “suavizar” o smile, para que este não apresente variações bruscas entre os strikes ou alterações de convexidade na curva de preços, que não são condizentes com a teoria de precificação de derivativos.

    Um método paramétrico, como o SVI, Heston ou SABR, busca ajustar às volatilidades implícitas observadas através dos preços das opções sendo praticados no mercado a uma determinada função, que possui parâmetros em sua definição que por sua vez determinam a forma desta. Ao se ajustar os parâmetros, pode-se adequar a função para ficar “o mais próxima possível” dos dados observados, sem necessariamente, no entanto, passar por todos estes pontos.

    A figura abaixo tenta mostrar as diferenças entre uma interpolação spline cúbica, uma suavização e uma parametrização SVI. Enquanto que a interpolação liga todos os pontos marcados, a suavização e a parametrização não necessariamente passam sobre estes mas fornecem uma curva mais “suave”, sem trocas de convexidade, o que geraria oportunidades de arbitragem e probabilidades negativas de ocorrência de determinados preços para o ativo subjacente, que ferem os princípios de precificação de opções. Os dados utilizados neste e nos próximos artigos sobre superfícies de volatilidade foram obtidos do site ivolatility.com na forma de amostra gratuita fornecida livremente. O ativo subjacente é o ETF IWM para a data de 21/09/2017.

    Diferentes métodos de ajuste de dados a um smile.

    Figura 1: Diferentes métodos de ajuste de dados a um smile.

    Pode-se verificar como os métodos SVI e a suavização não passam sobre todos os pontos marcados, com a suavização tendo dificuldade com a curvatura nos valores mais altos de moneyness e a SVI possuindo uma inclinação mais branda na asa esquerda do smile.

    Spline cúbica

    Este método é possivelmente um dos mais flexíveis e conhecidos de interpolação de dados univariados existente, embora também exista sua versão bi-dimensional. Uma spline nada mais é que “uma curva definida matematicamente por dois ou mais pontos de controle”2.

    No caso da spline cúbica, esta é uma função polinomial de grau 3 definida em cada subintervalo demarcados pelos pontos de controle, no caso de interpolação são todos nós. Ou seja, considere um segmento entre dois pontos consecutivos \([c, d]\in S\) a spline é uma função cúbica com seus parâmetros calculados pelo algoritmo de ajuste. Para o próximo intervalo de pontos dentro do domínio da função, um novo polinômio de grau 3 é ajustado, sendo que nos pontos de nós uma restrição de igualdade entre as derivadas nos dois segmentos é aplicada para garantir a suavidade da função interpolada como um todo.

    Assim, uma spline cúbica é uma função contínua, suave e diferenciável até a segunda ordem. Entretanto, suas derivadas, apesar de contínuas, podem não ser suaves, especialmente aquela de segunda ordem que pode apresentar pontos de “ruptura”. Esta característica de uma spline cúbica a torna pouco atrativa para a inferência de distribuições de probabilidade a partir de dados de volatilidade ou mesmo dos preços de opções.

    Cada segmento de uma spline cúbica é um polinômio de grau 3 diferente.

    Figura 2: Cada segmento de uma spline cúbica é um polinômio de grau 3 diferente.

    Suavização

    A técnica de suavização é muito semelhante a interpolação, inclusive o método spline também é aplicado, com algumas modificações de forma que nem todos os pontos fornecidos serão nós.

    Na spline de suavização (ou aproximação), os pontos fornecidos são separados entre os nós, onde a função deve passar e pontos de controle, que são utilizados para controlar a curvatura da função nestes pontos.

    Estas suavizações são principalmente utilizadas quando se possui muitas observações sujeitas a ruídos, de forma que uma interpolação entre todos os pontos seria tanto impraticável quanto sem sentido. O que se deseja, portanto, é uma função aproximada que melhor descreva o processo sob análise.

    Um ponto em comum entre estas técnicas é o parâmetro de suavização, ausente, na interpolação, que controla a “suavidade” da função estimada.

    Menor parâmetro de suavização gera granularidade na curva.

    Figura 3: Menor parâmetro de suavização gera granularidade na curva.

    Parametrização

    E por fim as técnicas de parametrização. Nesta categoria estão diversos conhecidos modelos de superfícies de volatilidade implícita, dentre eles os modelos de Heston (1993) e SVI de Gatheral (2004).

    Em comum, estes modelos tentam parametrizar a superfície, e por conseguinte o smile de volatilidade, de acordo com alguma função, em geral não-linear, que possui características condizentes com a teoria de precificão de derivativos e também a observação empírica das superfícies.

    Por exemplo, a parametrização raw da SVI possui a seguinte forma para a variância total3 :

    \[ w(k) = a + b\left(\rho(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right)\]

    que fornece um espaço de cinco parâmetros \(\chi_B=\{a, b, \rho, m, \sigma\}\) que definem o smile e devem, portanto, serem calibrados a partir de dados observados no mercado.

    O procedimento de calibração consiste em encontrar o conjunto de parâmetros que minimizam uma função perda entre a volatilidade prevista pelo modelo e os dados de mercado, enquanto satisfazem algumas restrições adicionais, como “ausência de arbitragem”, suavidade, etc. Trata-se, via de regra, de problemas de otimização não-linear com restrições de inequalidade também não-lineares.

    Função perda

    A função perda, ou função de calibração pode ser definida de diversas maneiras, de forma geral, para uma determinada maturidade, ela toma a forma:

    \[L=\sum\limits_{i=1}^n\lambda_i||\hat w(k_i)-w_{imp}(k_i)||\] onde \(||\cdot||\) é alguma medida de norma, sendo a mais conhecida o quadrado das diferenças, dando origem a minimização do erro quadrático médio (MSE). Para o presente smile sendo calibrado existem \(n\) strikes (\(k_i\)) e suas volatilidades implícitas observadas são \(w_{imp}(k_i)\). A resposta do modelo para um determinado strike é \(\hat w(k_i)\) e \(\lambda_i\) são os pesos dados na função perda para cada um destes strikes.

    Os pesos \(\lambda_i\) são utilizados para ponderar as observações das volatilidades mais importantes para o cálculo, onde se deseja que a curva ajustada possua um menor erro. Em geral, estes pesos são calculado como inversamente proporcionais:

    • ao quadrado dos spreads bid-ask, para dar mais importância às opções mais líquidas
    • ao quadrado da grega vega calculada a partir do modelo BSM

    Otimizadores

    Os otimizadores são os algoritmos pelos quais o problema de minimização posto é resolvido. Se a função perda é convexa, e ela deve ser construída de forma a ser, mesmo que não estritamente, então ela possui um ou mais pontos de mínimo onde o gradiente desta função é igual a zero. O que os otimizadores fazem é buscar o conjunto de parâmetros que minimizam a função perda e atendem as restrições impostas simultaneamente. Os otimizadores podem ser classificados em dois grandes grupos, globais e locais.

    Algoritmos locais dependem de uma estimativa inicial dos parâmetros para começarem a busca pelo mínimo. Seguindo uma regra utilizando-se o gradiente da função ou alguma heurística, estes otimizadores caminham em direção ao ponto de mínimo mais próximo da estimativa inicial, daí o nome “local”. Como desvantagem destes otimizadores é a mais evidente é que se a função perda for altamente não-linear, com diversos pontos de mínimo local, este otimizador pode ficar preso em um destes pontos sem nunca, no entanto, encontrar o mínimo global. Eles são, portanto muito sensíveis à estimativa inicial dos parâmetros.

    Por sua vez, otimizadores globais buscam mapear todo o espaço factível para os parâmetros e encontrar o ponto mínimo da função perda dentro deste espaço. Estes algoritmos não dependem de estimativas iniciais, uma vez que tentarão avaliar o espaço completo. São utilizados quando o problema de minimização é não-linear e possui múltiplos pontos de mínimo local. Estes algoritmos usam alguma forma de heurística para encontrar a região onde o mínimo global está localizado, mas são, em geral, ineficientes em apontar rapidamente onde este ponto de mínimo se encontra com precisão. Por esta razão, é frequente a utilização de otimizadores globais com um posterior refinamento de sua solução por algum algoritmo local.

    Abaixo apresentamos alguns exemplos mais comuns de otimizadores, tanto locais quanto globais:

    • Gauss-Newton: Este método é utilizado para encontrar as raízes de alguma função. Para encontrar o ponto de mínimo da função perda, precisa-se encontrar as raízes do gradiente desta função, portanto o método de Newton em otimização faz uso da função gradiente. Este é um método de otimização local.

    • Levenberg-Marquardt: Método muito utilizado para problemas não-lineares, ele parte de uma modificação ao método de Gauss-Newton ao introduzir um fator de amortecimento calculado iterativamente.

    • L-BFGS-B: BFGS é um método conhecido como quasi-Newton, onde não é necessário calcular a Hessiana do problema, ela é aproximada a partir do próprio gradiente. É bastante utilizado para resolver problemas não-lineares e em sua versão L-BFGS-B pode lidar com restrições do tipo box, intervalo dos parâmetros é fixo.

    • Nelder-Mead: Este é um método livre do uso de gradiente, já que usa uma heurística para construir um simplex e a partir deste “procurar” por um mínimo. Bastante utilizado quando a função objetivo pode não ser diferenciável. Faz uso de um simplex inicial, que pode ser grande o suficiente para encampar o mínimo global, entretanto, não se classifica como um otimizador global.

    • Algoritmo Genético: Este método utiliza conceitos da seleção natural para gerar os resultados da otimização. É um otimizador global, no sentido que independe de uma estimativa inicial de parâmetros e faz uma busca por todo o espaço factível. Em um algoritmo genético, uma população aleatória inicial de parâmetros é criada e a partir desta, as gerações evoluem conforme mutações e cross-over de características e é avaliado o fitness de cada conjunto de parâmetros até um deles ser considerado adequado.

    • Evolução Diferencial: É um método de otimização global, assim como o Algoritmo Genético e o Enxame de Partículas. Sua diferença reside no fato de que sua população inicial é constantemente avaliada e deslocada de posição. Se o agente obtiver uma situação melhor (menor valor para a função perda) na nova posição, esta agora faz parte da população. Desta forma os agentes, antes espalhados pelo espaço factível dos parâmetros, tendem a convergir para um ponto com o menor valor da função perda.

    • Enxame de Partículas: Do inglês, Particle Swarm Optimization – PSO este método é semelhante ao DE (Differential Evolution) porém as partículas (o equivalente dos agentes no DE) matém informações sobre a posição da melhor partícula até então, de forma a fazer com que as partículas tendam para a melhor solução.

    Conclusão

    Dependendo do objetivo da aplicação, superfícies de volatilidade podem ser interpoladas, suavizadas ou parametrizadas. A parametrização tem recebido especial interesse pois pode, ao mesmo tempo que garante uma superfície livre de arbitragem estática se devidamente construída, ajustar-se muito bem aos dados observados e gerar distribuições neutras ao risco implícitas factíveis.

    Para gerar uma superfície parametrizada, primeiramente é necessário um modelo teórico com propriedades desejáveis e que se ajuste aos dados de mercado quando calibrado. Escolhido este modelo paramétrico, passa-se a calibração do mesmo onde existem diversas opções de escolha entre otimizadores. Ao final do processo teremos um modelo de superfície devidamente parametrizado com valores que melhor se ajustam segundo alguma função perda escolhida.

    Com a superfície de volatilidade calibrada, as aplicações possíveis incluem a precificação de derivativos, gerenciamento de risco, simulações de Monte Carlo, análises de stress, entre outras.

    Referências

    Gatheral, Jim. 2004. “A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation of Volatility Derivatives.” Presentation at Global Derivatives & Risk Management, Madrid.

    Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies 6 (2). Oxford University Press: 327–43.

  • Veja mais detalhes no artigo anterior: Smile de volatilidade – parte 2
  • Definição retirada de https://pt.wikipedia.org/wiki/Spline
  • A variância total é o produto entre a variância implícita e o tempo para expiração, (w=\sigma^2_{imp}\cdot\tau).
  • Posted by Rafael Bressan in Derivativos & Riscos, 0 comments
    Superfícies de Volatilidade

    Superfícies de Volatilidade

    2019/02/01

    Já mostramos em artigos anteriores, processos estocásticos em finanças, o modelo de Black&Scholes e, como na realidade dos mercados surgem os smiles de volatilidade em duas partes, uma anomalia não prevista por B&S. Dado que este modelo não pode explicar o surgimento do smile de volatilidade e tampouco sua superfície, o estudo da volatilidade implícita tornou-se uma preocupação central nas finanças. Diversos modelos de superfícies de volatilidade foram propostos ao longo dos anos, e ainda o são, para buscar conciliar a presença do smile de volatilidade e a natureza estocástica da precificação do ativo subjacente.

    Apresentaremos alguns poucos destes modelos.

    Modelos estocásticos

    Volatilidade estocástica apresenta a noção que a volatilidade instantânea do ativo subjacente também é, por si só, um processo estocástico que pode ser correlacionado com o processo de formação do preço do ativo. O resultado destes modelo é um procedimento livre de arbitragem para a interpolação dos dados de mercado a superfície de volatilidade.

    Heston

    O modelo de Heston, baseado no trabalho de Heston (1993), assume que o quadrado da volatilidade segue uma equação diferencial estocástica – EDE – do tipo Cox-Ingersoll-Ross – CIR, a qual apresenta características desejáveis do ponto de vista da variância. Abaixo estão as três equações que definem um modelo de Heston:

    \[\begin{equation} \begin{aligned} dS_t=&\mu S_t dt + \sqrt{v_t}S_t dW_1\\ dv_t=&-\lambda(v_t-\bar v)dt+\eta\sqrt{v_t}dW_2\\ d\left\langle W_1, W_2 \right\rangle=&\rho dt \end{aligned} \tag{1} \end{equation}\]

    onde \(v_t\) é a variância estocástica, \(\lambda\) é o parâmetro que define a velocidade de convergência da volatilidade para seu valor de longo prazo \(\bar v\), \(\eta\) é a famigerada volatilidade da volatilidade e a notação \(d\left\langle W_1, W_2 \right\rangle\) indica a covariação entre os movimentos Brownianos padrões \(dW_1\) e \(dW_2\).

    Esta modelagem apresenta uma característica desejável, e até certo ponto, intuitiva para a volatilidade, o retorno a uma média de longo prazo. Empiricamente observamos regimes distintos de volatilidade para os ativos financeiros, em alguns momentos a volatilidade está anormalmente baixa ou durante momentos de estresse no mercado, incrivelmente alta. Porém não faria sentido um modelo onde a volatiliade pudesse estacionar permanentemente no limite inferior ou então divergir para infinito. O modelo de Heston garante que, mesmo sendo estocástica, a volatilidade não é atraída para estes extremos.

    Os preços das calls e puts européias possuem fórmula fechada para seu cômputo através da transformada de Fourier, como apresentado no artigo original. A complexidade destas equações e do método para sua resolução está fora do escopo deste blog, entretanto o leitor aficcionado pode encontrar uma demonstração da forma de resolução em Gatheral (2011).

    Basta-nos saber que em um framework geral de precificação de derivativos, o preço de uma call não descontada (preço de Black) pode ser escrita da seguinte forma:

    \[\begin{equation} C_B(x, v, \tau)=K\left[e^xP_1(x, v, \tau)-P_0(x, v, \tau)\right] \tag{2} \end{equation}\]

    onde \(x:=\ln K/F_t\). \(P_1\) e \(P_0\) são duas probabilidades na medida neutra ao risco, \(\mathbb Q\). Enquanto \(e^xP_1\) informa o valor esperado do ativo no vencimento dado que a opção está no dinheiro, \(P_0\) representa a probabilidade de ficar dentro do dinheiro na data de expiração.

    As probabilidades \(P_j\), \(j = 0, 1\) podem ser calculadas através da seguinte equação:

    \[\begin{equation} P_j(x, v, \tau)=\frac{1}{2}+\frac{1}{\pi}\int\limits_0^\infty Re\left\lbrace\frac{exp\{C_j(u, \tau)\bar v + D_j(u, \tau)v + iux\}}{iu}\right\rbrace du \tag{3} \end{equation}\]

    onde \(i\) representa o número imaginário \(\sqrt{-1}\) e \(Re\{\cdot\}\) é apenas a parte real de seu argumento.

    Primeiramente vamos definir algumas variáveis auxiliares:

    \[\alpha_j=-\frac{u^2}{2}-\frac{iu}{2}+jiu\]

    \[\beta_j=\lambda-j\rho\eta-\rho\eta i u\]

    \[\gamma=\frac{\eta^2}{2}\]

    \[r_{\pm}=\frac{\beta_j\pm\sqrt{\beta^2-4\alpha\gamma}}{2\gamma}=\frac{\beta\pm d}{\eta^2}\]

    \[d=\sqrt{\beta^2-4\alpha\gamma}\]

    \[g=\frac{r_-}{r_+}\]

    Então:

    \[C_j(u, \tau)=\lambda\left\lbrace r_-\tau-\frac{2}{\eta^2}\ln\left(\frac{1-ge^{-d\tau}}{1-g}\right) \right\rbrace \tag{4}\]

    \[D_j(u, \tau)=r_-\frac{1-e^{-d\tau}}{1-ge^{-d\tau}} \tag{5}\]

    SABR

    Este modelo foi apresentado por Hagan et al. (2002) e assume que o preço forward, \(F_t\) do ativo subjacente e sua volatilidade instantânea, \(\alpha_t\), seguem as seguintes EDEs:

    \[ \begin{aligned} dF_t=&\alpha_tF_t^\beta dW_1\\ d\alpha_t=&\nu\alpha_t dW_2\\ d\left\langle W_1, W_2 \right\rangle =&\rho dt \end{aligned} \tag{6} \]

    onde \(\nu > 0\) é a volatilidade da volatilidade e \(\beta > 0\) é conhecido como o coeficiente de alavancagem.

    A interpretação financeira se dá pela seguinte maneira: \(\alpha_t\) determina o nível geral de volatilidade do forward no dinheiro, \(\beta\) mede a assimetria do smile sendo as duas escolhas particulares: \(\beta = 1\) correspondendo ao modelo log-normal sem smile e \(\beta = 0\) correspondendo ao modelo normal com um smile irrealista, \(\rho\) também controla a inclinação do smile, quando \(\rho < 0\) uma inclinação negativa típica de equities surge e com a opção \(\rho = 0\) produzindo um smile de volatilidade simétrico, por fim, \(\nu\) é uma medida de convexidade. Também é possível verificar que a volatilidade estocástica, \(\alpha_t\) segue uma distribuição log-normal.

    Comparado com outros modelos de volatilidade estocástica, o SABR é um dos mais simples e possui aproximações analíticas para o cálculo do preço de opções Europeias. Ele pode ser utilizado para ajustar um smile observado no mercado de forma acurada, entretanto, para ajustar uma superfície completa este modelo sofre com algumas restrições.

    Bates

    Em modelos de difusão como B&S e mesmo Heston, o processo de formação de preço do ativo se comporta como um movimento browniano e a probabilidade de que este preço se mova bruscamente em um curto período de tempo é muito pequena. Assim, em tais modelos, os preços das opções OTM mais curtas são muito inferiores ao que se observa nos mercados reais.

    Para endereçar esta deficiência, Bates (1996) amplia o modelo de Heston incluindo saltos no processo de preço do ativo subjacente. Estes modelos, com a inclusão de saltos aleatórios na dinâmica de preços são conhecidos como Jump-Diffusion. A dinâmica é especificada pelas seguintes equações:

    \[\begin{equation} \begin{aligned} dS_t=&\mu S_tdt+\sqrt{v_t}S_tdW_1(t)+J_t S_t dN_t\\ dv_t=&-\lambda(v_t-\bar v)dt+\eta\sqrt{v_t}dW_2(t)\\ d\left\langle W_1, W_2 \right\rangle =&\rho dt \end{aligned} \tag{7} \end{equation}\]

    Muito semelhante, portanto ao modelo de Heston nas equações (1), com a diferença da inclusão de um processo de Poisson, \(dN_t\) com intensidade \(\theta\) indicando a probabilidade instantânea de um salto de tamanho unitário. \(J_t\) é o tamanho do salto aleatório e seu logaritmo segue uma distribuição gaussiana:

    \[\begin{equation} \ln{(1+J)}\sim N\left(\ln(1+\beta)-\frac{1}{2}\alpha^2\,\, ,\,\,\alpha^2\right) \tag{8} \end{equation}\]

    Este modelo possui fórmulas fechadas para os preços de calls e puts, novamente utilizando-se o método da transformada de Fourier, que podem ser encontrados utilizando o método de Duffie, Pan, and Singleton (2000).

    Volatilidade local

    Conforme visto neste artigo anterior sobre o smile de volatilidade, é possível a partir das volatilidades implícitas obter a distribuição neutra ao risco do preço terminal do ativo subjacente. O pesquisador e profissional de mercado Bruno Dupire em seu artigo, Dupire (1994), fez então o seguinte questionamento: dada uma distribuição implícita, existe apenas um processo de difusão1 que seja consistente com esta distribuição? A resposta obtida foi sim, e deste processo surge a função de volatilidade local, \(\sigma_L(S, t)\), por vezes também conhecida como função de volatilidade implícita.

    A equação de Dupire é apresentada abaixo:

    \[\frac{\partial C_B}{\partial \tau}=\frac{1}{2}\sigma_L^2K^2\frac{\partial^2C_B}{\partial K^2} \tag{9}\]

    da qual todos os termos podem ser obtidos a partir dos dados de mercado de uma superfície de volatilidade, com exceção é claro, da função de volatilidade local \(\sigma_L\) que poderá ser calculada. Esta equação pode ser vista como a definição da função de volatiliade local independente do processo que governa a evolução da volatilidade (um processo estocástico, por exemplo).

    Uma forma de interpretar a volatilidade, ou mais precisamente a variância local, é na forma de valor esperado dentro da medida neutra ao risco. Resultado devido a trabalho de Derman and Kani (1998), onde a equação de Dupire pode ser reescrita da seguinte forma:

    \[\frac{\partial C_B}{\partial \tau}=\mathbb E\left[v_T|S_T=K\right]\frac{1}{2}K^2\frac{\partial^2C_B}{\partial K^2} \tag{10}\]

    Ou seja, a variância local é a expectativa neutra ao risco da variância instantânea condicionada ao preço terminal do ativo, \(S_T\) ser igual ao preço de exercício \(K\).

    Uma das formas mais praticadas para a implementação de uma superfície de volatilidade local é através de árvores binomiais conforme apresentado por Derman and Kani (1994).

    Modelos paramétricos

    Diversas representações paramétricas já foram apresentadas para a superfície de volatilidade. Neste tipo de modelo uma função não-linear, dependente de um conjunto de parâmetros é especificada e, a partir dos dados observados no mercado, a parametrização é encontrada através da minimização de alguma função objetivo, método conhecido como calibração.

    SVI

    A parametrização da do tipo SVI (Stochastic Volatility Inspired) para o smile foi introduzida por Gatheral (2004) e é motivada pelo comportamento assintótico para strikes extremos. É baseada no smile gerado por um modelo de Heston (1993). Sua parametrização é dada em termos de forward log-moneyness conforme apresentado anteriormente, \(k=\ln(K/S)-r\tau=\ln(K/F)\), por:

    \[\begin{equation} w(k) = a + b\left(\rho(k-m)+\sqrt{(k-m)^2 + \sigma^2}\right) \tag{11} \end{equation}\]

    onde \(w\) é a variância total e o conjunto de parâmetros \(\chi_R = \{a, b, \rho, m, \sigma\}\) definem a forma deste smile que é conhecido como parametrização raw do SVI. Os limites destes parâmetros são tais que: \(a \in \mathbb R\), \(b \geq 0\), \(|\rho| < 1\), \(m \in \mathbb R\), \(\sigma > 0\), e a condição “óbivia” segundo Gatheral and Jacquier (2014), \(a+b \sigma\sqrt{1 − \rho^2} \geq 0\), que garante \(w(k; \chi_R) \geq 0\) para todo \(k \in \mathbb R\). Alterações nestes parâmetros têm os seguintes efeitos:

    • Aumentar \(a\) eleva o nível geral de variância, um deslocamento vertical do smile
    • Aumentar \(b\) aumenta as inclinações das asas, comprimindo o smile
    • Aumentar \(\rho\) provoca uma rotação no sentido anti-horário
    • Aumentar \(m\) desloca o smile para a direita
    • Aumentar \(\sigma\) reduz a curvatura no dinheiro (ATM) do smile
    Duas parametrizações hipotéticas para a SVI.

    Figura 1: Duas parametrizações hipotéticas para a SVI.

    A figura 1 acima apresenta duas parametrizações hipotéticas para o modelo. A variância total \(w_1\) tem como conjunto de parâmetros, \(\chi = \{0, 0.5, -0.6, 0, 0.3\}\) e poderia representar um smile de taxas de câmbio por exemplo. Enquanto que o modelo \(w_2\) conta com \(\chi = \{-0.04, 0.5, -0.9, 0, 0.4\}\) e se ajusta melhor ao mercado de equities.

    Existem outras duas parametrizações para o SVI, a natural e a jump-wings que podem ser conferidas no artigo de Gatheral and Jacquier (2014) e serão abordadas em outro artigo a ser publicado futuramente pelo CF.

    O SVI tem muitas vantagens, como o baixo tempo computacional, a variância implícita se comporta linearmente nos extremos, conforme prescrito pela fórmula do momento de Lee (2004), e boa aproximação de volatilidades implícitas para strikes muito dentro ou fora do dinheiro. O ajuste do SVI para os mercados de equities é muito melhor do que para outros mercados.

    Modelos não-paramétricos

    Se violações de arbitragem na estimativa da superfície não representam um problema de interesse particular, virtualmente qualquer método não-paramétrico pode ser aplicado a dados de volatilidade implícita. Uma escolha específica deve ser feita a partir de considerações práticas.

    Interpolação e suavização spline

    As seguintes splines2 podem ser empregadas para interpolar smiles de volatilidade:

    • Spline cúbica
    • B-spline cúbica

    No caso da spline cúbica, esta é uma função polinomial de grau 3 definida em cada subintervalo demarcados pelos pontos de controle, no caso de interpolação são todos nós. Uma spline cúbica é uma função contínua, suave e diferenciável até a segunda ordem.

    Uma B-spline3, ou basis-spline é uma função básica para funções spline de mesma ordem, o que significa que todas as funções spline possíveis podem ser construídas a partir de uma combinação linear de B-splines. Estas podem ser preferidas às splines cúbicas, devido à sua robustez a dados ruins e à capacidade de preservar a monotonicidade e a convexidade.

    Praticamente qualquer linguagem de programação e até mesmo o Excel4 possui funções pré-programadas para implementar interpolações spline, sendo um método de fácil aplicação. Entretanto, estas técnicas de interpolação não são específicas para superfícies de volatilidade e, portanto, não garantem que a superfície interpolada seja livre de oportunidades de arbitragem, mesmo que os dados apresentados o sejam.

    Algoritmos livres de arbitragem

    Considerando as limitações das interpolações com relação a presença de arbitragem na superfície gerada, vários artigos propõe algoritmos de interpolação que garantem que oportunidades de arbitragem estática não se apresentem, como em Kahalé (2004) e Wang, Yin, and Qi (2004).

    Em comum, estes algoritmos possuem como requisito que os dados a serem interpolados sejam livres de arbitragem desde o início, o que nem sempre pode ser obtido. Kahalé (2004), por exemplo, propõe um procedimento de interpolação baseado em polinômios convexos por partes que simulam a fórmula de B&S. O resultado da função de preço de calls é livre de arbitragem e, portanto, também a volatilidade implícita calculada a partir dela. Em uma segunda etapa, a variância total implícita é interpolada linearmente ao longo dos strikes.

    A abordagem de Fengler (2012) é baseada na suavização dos preços das opções por spline cúbica, e não em interpolação. Desta forma, os dados de entrada não precisam ser livres de arbitragem. Restrições especificamente adicionadas ao problema de minimização, a fim de garantir que não haja arbitragem, são impostos ao algoritmo spline. Uma possível desvantagem dessa abordagem é o fato de que a função de preço calls é aproximada por polinômios. Isso pode se mostrar desvantajoso, especialmente se extrapolação for necessária, já que a função de precificação certamente não é um polinômio. A escolha de uma grade suficientemente densa nos strikes pode minimizar este problema.

    Extrapolação do smile

    É argumentado em Benaim, Dodgson, and Kainth (2008) que que um método de extrapolação deve resultar em preços livres de arbitragem para as opções europeias (baunilha), ou seja, os preços das opções devem ser funções decrescentes (crescentes) para calls (puts), convexas com relação ao strike, e permanecer dentro de certos limites de inclinação. Além disso, o método de extrapolação deve idealmente ter as seguintes propriedades:

    1. Deve precificar corretamente todas as opções baunilha observadas
    2. A densidade da distribuição implícita e os preços das opções baunilha devem ser fáceis de calcular
    3. O método não deve gerar caudas irrealistas e, se possível, deve permitir controlá-las
    4. Deve ser robusto e flexível o suficiente para ser usado com uma ampla variedade de superfícies de volatilidade implícita
    5. Deve ser fácil e rápido inicializar para um determinado smile

    Uma das formas de extrapolação comumente utilizada é fazer a interpolação dos dados dentro da área observada, por exemplo com splines cúbicas, e então fazer a extrapolação na forma de uma linha reta, ou seja, mantendo na região de extrapolação a mesma inclinação observada no último ponto interpolado. Esta forma, segundo os autores não é adequada pois insere uma descontinuidade na densidade e também gera caudas muito curtas, de fato truncadas, a partir do ponto onde se inicia a extrapolação.

    É proposto um método de extrapolação através de fórmulas fechadas para a asa esquerda (OTM puts) e direita (OTM call) do smile. Estas fórmulas têm as propriedades desejadas para strikes extremos e mantêm a convexidade dos preços. Suponha um intervalo de preços de exercício os quais existem observações de mercado e portanto, é possível fazer interpolação: \(K_-\leq K \leq K_+\), os valores das puts, \(P(K)\), para \(K e das calls, \(C(K)\), para \(K>K_+\) são dados por:

    \[\begin{equation} P(K)=K^\mu \exp\left(a_1+b_1K+c_1K^2\right) \tag{12} \end{equation}\] \[\begin{equation} C(K)=K^{-\nu} \exp\left(a_2+\frac{b_2}{K}+\frac{c_2}{K^2}\right) \tag{13} \end{equation}\]

    onde se garante \(\lim\limits_{K\rightarrow 0} P(K)=0\) e \(\lim\limits_{K\rightarrow \infty} C(K)=0\), fazendo \(\mu > 1\) e \(\nu > 0\). Estes parâmetros também servem para controlar a massa de probabilidade sob as caudas da distribuição.

    As condições para ajustar o preço e suas duas primeiras derivadas em \(K_-\) e \(K_+\) produz um conjunto de equações lineares para os parâmetros \(a_1, b_1, c_1\) e \(a_2, b_2, c_2\), respectivamente.

    Conclusão

    Repassamos neste artigos, algumas das principais metodologias para a construção da superfície de volatilidade implícita. Modelos de volatilidade estocástica são capazes de gerar smiles compatíveis com aqueles observados nos mercados, sendo dependentes de técnicas de calibração destes modelos. O modelo paramétrico SVI pode ser adequado para mercado de equities, entretanto, assim como acontece nas técnicas de interpolação, restrições com relação aos parâmetros devem ser impostas a fim de evitar o surgimento de oportunidades de arbitragem estática. Por fim uma estratégia de como implementar a extrapolação do smile fora da região central foi apresentada.

    Referências

    Bates, David S. 1996. “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.” The Review of Financial Studies 9 (1). Oxford University Press: 69–107.

    Benaim, Shalom, Matthew Dodgson, and Dherminder Kainth. 2008. “An Arbitrage-Free Method for Smile Extrapolation.” Royal Bank of Scotland, Technical Report.

    Derman, Emanuel, and Iraj Kani. 1994. “The Volatility Smile and Its Implied Tree.” Goldman Sachs Quantitative Strategies Research Notes 7 (January).

    ———. 1998. “Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility.” International Journal of Theoretical and Applied Finance 01 (01): 61–110. doi:10.1142/S0219024998000059.

    Duffie, Darrell, Jun Pan, and Kenneth Singleton. 2000. “Transform Analysis and Asset Pricing for Affine Jump-Diffusions.” Econometrica 68 (6). Wiley Online Library: 1343–76.

    Dupire, Bruno. 1994. “Pricing with a Smile.” Risk 7 (1): 18–20.

    Fengler, Matthias R. 2012. “Option Data and Modeling Bsm Implied Volatility.” In Handbook of Computational Finance, 117–42. Springer.

    Gatheral, Jim. 2004. “A Parsimonious Arbitrage-Free Implied Volatility Parameterization with Application to the Valuation of Volatility Derivatives.” Presentation at Global Derivatives & Risk Management, Madrid.

    ———. 2011. The Volatility Surface: A Practitioner’s Guide. Vol. 357. John Wiley & Sons.

    Gatheral, Jim, and Antoine Jacquier. 2014. “Arbitrage-Free Svi Volatility Surfaces.” Quantitative Finance 14 (1). Taylor & Francis: 59–71.

    Hagan, Patrick S, Deep Kumar, Andrew S Lesniewski, and Diana E Woodward. 2002. “Managing Smile Risk.” The Best of Wilmott 1: 249–96.

    Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies 6 (2). Oxford University Press: 327–43.

    Kahalé, Nabil. 2004. “An Arbitrage-Free Interpolation of Volatilities.” Risk 17 (5): 102–6.

    Lee, Roger W. 2004. “The Moment Formula for Implied Volatility at Extreme Strikes.” Mathematical Finance: An International Journal of Mathematics, Statistics and Financial Economics 14 (3). Wiley Online Library: 469–80.

    Wang, Y, H Yin, and L Qi. 2004. “No-Arbitrage Interpolation of the Option Price Function and Its Reformulation.” Journal of Optimization Theory and Applications 120 (3). Springer: 627–49.

  • Processo de difusão é a solução de uma equação diferencial estocástica com propriedades de Markov. O Movimento Browniano é um exemplo.

  • Spline

  • B-Spline

  • Cubic Spline Function in VBA

    Posted by Rafael Bressan in Derivativos & Riscos, 0 comments
    Smile de Volatilidade parte 2

    Smile de Volatilidade parte 2

    2019/01/25

    Daremos continuidade ao artigo anterior sobre o smile de volatilidade. Falaremos sobre a estrutura a termo da volatilidade implícita, agregando uma segunda dimensão ao smile e transformando-o na famigerada superfície de volatilidade implícita. Também será definida o que é a arbitragem estática e seus tipos e como a limitação da presença de arbitragem estática impõe restrições na superfície de volatilidade. Por fim, será demonstrado como, a partir de um smile de volatilidade é possível derivar a distribuição implícita neutra ao risco do subjacente para data de expiração das opções.

    Estrutura a termo

    O mercado precifica a volatilidade implícita de forma que esta dependa também do tempo até expiração, bem como do preço de exercício.

    A volatilidade implícita tende a ser uma função crescente da maturidade quando as volatilidades de curto prazo são historicamente baixas e função decrescente da maturidade quando as volatilidades de curto prazo são historicamente altas. Isso porque existe uma expectativa de reversão a uma média de longo prazo embutida na volatilidade. Esta característica é explorada explicitamente por alguns modelos de volatilidade, como em Heston (1993).

    As superfícies de volatilidade combinam smiles com a estrutura a termo de volatilidade para tabular valores apropriados para precificar uma opção com qualquer preço de exercício e prazo de expiração.

    Da mesma forma como a curva de juros em um dado momento é uma descrição concisa dos preços dos títulos negociados naquele mercado, assim, para um ativo subjacente em particular em determinado momento, a superfície de volatilidade implícita fornece uma descrição resumida de seu mercado de opções. Considerando que os rendimentos dos títulos são diferenciados pelo seu tempo até o vencimento, as opções são diferenciadas por seu tempo até a expiração e o strike, logo requerem uma superfície ao invés de uma curva.

    A figura 1 demonstra uma superfície de volatilidade implícita do SPX em 15/09/2005, conforme apresentado em Gatheral (2011).

    Superfície de volatilidade implícita.

    Figura 1: Superfície de volatilidade implícita.

    Arbitragem estática

    Antes de definir o que é arbitragem estática que pode estar presente em uma superfície de volatilidade (ou na superfície de preço de opções), vamos partir para a intuição por trás desta definição.

    O princípio de ausência de arbitragem é dominante na teoria financeira. Este princípio nos informa que não deve existir lucro sem que se incorra em algum tipo de risco, o lucro sempre é a remuneração do investidor que aceitou carregar alguma forma de risco durante o investimento. Portanto, não devem existir perfis de lucro acima da taxa livre de risco (payoffs positivos) com probabilidade de 100%.

    Primeiro consideramos uma trava de alta com opções do tipo call. Excluindo-se os custos de transação, esta operação sempre oferece um retorno positivo ou zero, conforme a figura 2. Por mais que esta estratégia esteja montada fora do dinheiro, sempre existe uma possibilidade de ela ter lucro, \(S_T>K\) e portanto seu preço deve ser sempre maior que zero.

    Perfil de lucro de uma trava de alta.

    Figura 2: Perfil de lucro de uma trava de alta.

    É claro que quanto mais ITM estejam as opções, maior seu preço e quanto mais fora do dinheiro menor será seu valor até o limite inferior zero. Se levarmos a diferença entre os strikes, \(dK\) a zero temos que:

    \[\frac{\partial C}{\partial K}\leq 0\]

    Este é o limite de arbitragem para travas de alta ou, mais conhecido pelo termo em inglês call spread no-arbitrage e impõe que os preços das calls devem ser uma função descrescente no strike. De forma equivalente e através da paridade compra-venda este limite de arbitragem para as puts é:

    \[\frac{\partial P}{\partial K}\geq 0\]

    Arbitragem de borboleta

    Também deve ser imposta uma restrição na segunda derivada do preço das opções em relação ao strike, e esta é conhecida como limite de arbitragem para borboletas. Vejamos porquê.

    Considere uma estratégia do tipo borboleta, onde se compra uma quantia de calls no strike \(K-dK\), vende-se duas vezes esta quantia em \(K\) e compra-se novamente um lote em \(K+dK\), o perfil de lucro desta operação no vencimento está representado na figura 3.

    Borboleta realizada com calls.

    Figura 3: Borboleta realizada com calls.

    Seguindo a mesma linha de raciocínio anterior, como o payoff da borboleta é sempre não negativo também deve ser o seu valor para qualquer período anterior a expiração. Se denotarmos \(\pi_B\) o valor da borboleta, então \(\pi_B\geq0\).

    Agora imagine que escalamos a estratégia de forma que um lote de compras (na venda são dois lotes) seja de tamanho \(1/dK^2\), o valor para a montagem desta operação deve ser, portanto:

    \[ \pi_B=\frac{C(K-dK)-2C(K)+C(K+dK)}{dK^2} \]

    E se levarmos ao limite em que \(dK\rightarrow 0\), a equação acima torna-se justamente a segunda derivada do preço da call no strike \(K\).

    \[ \begin{aligned} \frac{\partial^2 C(K)}{\partial K^2}=& \pi_B\\ \geq & 0 \end{aligned} \]

    Ou seja, os preços das calls são uma função convexa nos strikes. O mesmo raciocínio pode ser feito para uma borboleta com puts e o resultado será equivalente, o preço das puts também deve ser uma função convexa nos strikes.

    Arbitragem de calendário

    Passamos agora a analisar os limites de arbitragem na estrutura a termo da superfície de volatilidade. A arbitragem de calendário normalmente é expressa em termos de monotonicidade dos preços em relação ao período para expiração. Ou seja, quanto maior o prazo de maturidade de uma opção para um mesmo preço de exercício, maior deve ser seu valor.

    É fácil de entender este limite com base nas probabilidades de exercício. Como sabemos, em um processo estocástico do tipo MBG a variância do processo cresce conforme a raiz do tempo, \(\sqrt{\tau}\). Quanto maior a variância do ativo subjacente, maior a probabilidade deste alcançar um determinado preço, mais elevado ou não. Assim, seja uma call ou put OTM quanto mais distante estiver seu prazo de maturidade, maior a probabilidade de exercício e portanto, maior seu valor.

    Dado que a relação de volatilidade total implícita e preço de uma opção também é direta e positiva, conforme demonstrado na parte 1 deste artigo, segue que a volatilidade total deve ser não decrescente no tempo para expiração.

    Esta relação pode ser expressa através da seguinte equação para uma call precificada através de B&S:

    \[ \frac{\partial C_{BS}(k, \theta(\tau))}{\partial \tau}=\partial_\theta C_{BS}\cdot\partial_\tau \theta \geq 0 \]

    onde \(\partial_\theta C_{BS}\) é a derivada parcial do preço da call em relação a volatilidade total implícita, que já demonstramos ser positiva e \(\partial_\tau \theta\) é a derivada parcial da volatilidade total implícita em relação ao tempo para maturidade que, portanto, deve ser maior ou igual a zero para obedecer a restrição imposta ao preço da call.

    Limites de inclinação

    Se mantivermos a volatilidade implícita constante para todos os strikes, os preços das calls no modelo B&S devem ser decrescentes. Por outro lado, para um strike fixo, o preço de uma call se eleva à medida que a volatilidade implícita aumenta. Suponha por um momento que a volatilidade implícita varia com o strike como é o caso nos smiles. À medida que o strike aumenta, se a volatilidade implícita aumentar muito rapidamente, seu efeito sobre o preço da call pode mais que compensar o declínio no preço devido a elevação do preço de exercício e, assim, levar a um aumento líquido no preço da opção. Isso violaria o requisito de que \(\partial C /\partial K \leq 0\) e, portanto, leva a um limite superior na taxa em que a volatilidade implícita pode aumentar com o strike.

    Novamente, o mesmo raciocínio pode ser imposto para o lado das puts. A volatilidade implícita não pode se elevar tão rapidamente quando os strikes se reduzem de forma que uma put de strike menor tenha valor mais elevado que outra que esteja mais próxima do dinheiro.

    Finalmente, um sumário dos limites impostos a uma superfície de preços de opções (calls no caso apresentado), que implicam em limites para a superfície de volatilidade é apresentado abaixo1:

    1. \(\partial_\tau C \geq 0\)
    2. \(\lim\limits_{K\rightarrow\infty}C(K, \tau)=0\)
    3. \(\lim\limits_{K\rightarrow-\infty}C(K, \tau)+K=a, \quad a \in \mathbb R\)
    4. \(C(K, \tau)\) é convexa em \(K\)
    5. \(C(K, \tau)\) é não-negativa

    Distribuição implícita

    O modelo B&S é baseado na suposição que o ativo subjacente segue uma distribuição log-normal em seus preços. Caso esta suposição fosse de fato realizada no mercado, o smile de volatilidade seria uma reta completamente horizontal, não haveria variação na volatilidade implícita conforme o preço de exercício. Entretanto, esta não é a realidade dos smiles e podemos fazer a pergunta inversa portanto, qual a distribuição neutra ao risco que está implícita no smile de volatilidade?

    Certamente não é uma log-normal. Na verdade, a densidade da distribuição que está implícita em um smile nada mais é que a convexidade deste smile, ou seja, sua segunda derivada em relação ao strike. Esta distribuição implícita também é por vezes chamada de RND (risk neutral density) e é muito útil para fazer a precificação de outras opções que não são observadas no smile ou extrair probabilidades de ocorrência de eventos precificadas pelo mercado.

    Pode-se obter este resultado a partir da definição do valor de uma call e é conhecido como a fórmula de Breeden-Litzenberger2. O valor de uma call é o valor esperado do payoff terminal desta call ponderado pela densidade neutra ao risco do subjacente. Ou seja:

    \[ C(S, t)=e^{-r\tau}\int\limits_{0}^\infty p(S,t,S_T,T)\max\{S_T-K, 0\}dS_T \]

    onde \(p(\cdot)\) é a densidade neutra ao risco e estamos supondo uma taxa de juros livre de risco constante durante o período de vida da opção. Como o payoff da call é não linear, sendo zero para qualquer valor de \(S_T \leq K\) e igual a \(S_T-K\) quando \(S_T > K\), podemos escrever esta equação como:

    \[ C(S, t)=e^{-r\tau}\int\limits_{K}^\infty p(S,t,S_T,T)(S_T-K)dS_T \]

    que pode ser rearranjada, com alguma simplificação na notação, da seguinte forma.

    \[ \begin{aligned} \frac{\partial C}{\partial K}=& -e^{-r\tau}\int\limits_{K}^\infty p(S_T)dS_T\\ e^{r\tau}\frac{\partial C}{\partial K}=& \int\limits_{-\infty}^K p(S_T)dS_T\\ e^{r\tau}\frac{\partial^2 C}{\partial K^2}=& \ p(K)\\ \frac{\partial^2 C_B}{\partial K^2}=& \ p(K)\\ \end{aligned} \]

    Onde usou-se a notação \(C_B\) para denotar a formulação de Black para o preço de uma call. Ou seja, a segunda derivada em relação ao strike do preço não descontado de uma call é a distribuição neutra ao risco do ativo subjacente, e é válida para todos preços de exercício.

    Portanto, se desejarmos saber qual a distribuição de probabilidades de preços do ativo subjacente em uma data futura que possua vencimento de opções, basta encontrarmos a convexidade do smile dos preços forward daquele vencimento3.

    Conclusão

    Este foi um artigo denso, porém com vários conceitos importantes para a compreensão do comportamento da superfície de volatilidade. A estrutura a termo também é existente na volatilidade implícita e está limitada pela ausência de arbitragem do tipo calendário. O smile de volatilidade, que é uma fatia da superfície com prazo de expiração constante, possui suas próprias limitações de forma, com a ausência de arbitragem do tipo borboleta e limitações quanto a inclinação.

    Por fim, foi demonstrado como a convexidade do smile de preços fornece a distribuição implícita para os preços do ativo subjacente para a data de expiração das opções.

    Referências

    Aurell, Alexander. 2014. “The Svi Implied Volatility Model and Its Calibration.” Master’s thesis, Kungliga Tekniska Högskolan.

    Breeden, Douglas T, and Robert H Litzenberger. 1978. “Prices of State-Contingent Claims Implicit in Option Prices.” Journal of Business. JSTOR, 621–51.

    Gatheral, Jim. 2011. The Volatility Surface: A Practitioner’s Guide. Vol. 357. John Wiley & Sons.

    Heston, Steven L. 1993. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies 6 (2). Oxford University Press: 327–43.

  • Retirado de
    Aurell (2014), p. 25.[↩][2]

  • Autores da formulação em seu artigo,
    Breeden and Litzenberger (1978)[↩][3]

  • Simples em teoria, muito mais complicado na prática, com diversos problemas para a extrapolação do smile para strikes extremos.

    Posted by Rafael Bressan in Derivativos & Riscos, 0 comments
    Smile de Volatilidade

    Smile de Volatilidade

    <br /> Smile de Volatilidade – Superfície de Volatilidade<br />

    A volatilidade instantânea, \(\sigma\), do ativo subjacente é a única variável no modelo B&S que não pode ser diretamente observada. De fato, a volatilidade (ou equivalentemente a variância) de um ativo é dita uma variável latente. Sabemos que ela existe e possui algum valor no processo gerador, o processo pelo qual os preços são formados, porém não conseguimos observá-la diretamente, apenas estimá-la. Uma das formas de estimação de volatilidade pode ser a partir de dados históricos, mas várias outras formas existem, entre elas processos GARCH, volatilidade realizada, volatilidade estocástica, etc.

    Uma vez que a volatilidade não pode ser diretamente observada, a prática comum no mercado é fazer o caminho inverso. Considerar os preços de mercado para as opções como dado, e a partir do modelo B&S inverter a equação de preço da Call ou Put para encontrar a volatilidade deste modelo que é compatível com os preços de mercado. A esta volatilidade encontrada damos o nome de volatilidade implícita.

    Portanto, o smile de volatilidade que tratamos neste post é na verdade um gráfico entre a volatilidade implícita, retirada de opções Européias (baunilhas, do inglês vanilla options) a partir do modelo B&S, contra os strikes destas opções.

    Reparametrizando B&S e definição de moneyness

    Nem sempre é interessante plotar o smile contra os strikes propriamente ditos, uma forma de avaliar o quanto uma opção está “dentro, fora ou no dinheiro” pode ser a grega Delta ou então o chamado moneyness (por favor, se alguém tiver uma boa tradução para este termo, deixe nos comentários). Tradicionalmente a medida de moneyness é a relação \(K/S\), ou seja o strike contra o preço corrente do subjacente. Porém existem outras definições mais interessantes para se trabalhar, entretanto, antes devemos fazer uso de algumas definições e vamos reparametrizar as expressões \(d1\) e \(d2\) do modelo B&S.

    Lembrando que em precificação de opções estamos no mundo neutro ao risco, vamos definir o valor forward, \(F\) do subjacente como o valor corrente composto pela taxa livre de risco até a maturidade da opção, ou seja:

    \[F=e^{r\tau}S\]

    A volatilidade (implícita) total pode ser definida como a volatiliade reescalada pela raiz do tempo, que nos dá uma informação da volatiliade esperada para o subjacente do período corrente até a maturidade. Da mesma forma, a variância total. Denotanto a volatilidade total por \(\theta\) e a variância total por \(w\), temos:

    \[\theta=\sigma_{imp}\cdot \sqrt{\tau}\]

    e

    \[w=\sigma_{imp}^2\cdot\tau\]

    Vamos também definir a medida forward log-moneyness e denotá-la por \(k\). Esta será a medida de moneyness que iremos utilizar ao longo deste e de outros artigos, portanto iremos utilizar este termo para designar o forward log-moneyness a não ser que expresso de forma contrária no texto.

    \[k=\ln\left(\frac{K}{S}\right)-r\tau=\ln\left(\frac{K}{F}\right)\]

    Logo, o strike está relacionado ao moneyness de forma que: \(K=Fe^k\).

    Podemos agora reparametrizar as expressões \(d1\) e \(d2\) do modelo B&S de forma que serão mais facilmente trabalhadas em modelos de volatilidade. Lembrando destas expressões que já foram apresentadas em artigo anterior:

    \[\begin{aligned} &d_{1}={\frac {\ln(S/K)+(r+\sigma ^{2}/2)(\tau)}{\sigma {\sqrt {\tau}}}}\\ &d_{2}={\frac {\ln(S/K)+(r-\sigma ^{2}/2)(\tau)}{\sigma {\sqrt {\tau}}}}=d_1-\sigma\sqrt{\tau} \end{aligned}\]

    Substituindo as expressões para forward log-moneyness e volatilidade total nas definições acima temos as novas parametrizações para \(d1\) e \(d2\):

    \[\begin{aligned} &d_{1}={-\frac{k}{\theta}+\frac{\theta}{2}}\\ &d_{2}={-\frac{k}{\theta}-\frac{\theta}{2}}=d_1-\theta \end{aligned}\]

    Retomando o valor da opção do tipo Call no modelo B&S, podemos reescrever sua fórmula de apreçamento da seguinte forma:

    \[\begin{aligned} C(K, \tau)=&SN(d1)-Ke^{-r\tau}N(d2)\\ e^{r\tau}C(K, \tau)=&FN(d1)-KN(d2)\\ =&F\left[N(d1)-e^kN(d2)\right] \end{aligned}\]

    Esta equação é conhecida como a forma de Black de precificação (Black Call price formula), que relaciona os valores forward da opção (também conhecido como valor não descontado), do subjacente e do strike. Esta formulação é particularmente útil quando formos extrair a distribuição neutra ao risco do subjacente que está implícita nos preços de mercado das opções.

    Características de smiles de volatilidade

    Caso o modelo de Black, Schole e Merton estivesse em acordo com a realidade, e os ativos tivessem seus preços formados a partir de um verdadeiro MBG, a volatilidade implícita seria uma constante. O gráfico do smile de volatilidade seria uma reta horizontal, com a mesma volatilidade para qualquer nível de moneyness e se considerarmos a superfície toda (que leva em conta os diversos tempos para expiração) esta seria paralela ao domínio \((k, \tau)\). Não estaríamos escrevendo (e você lendo) este artigo se este fosse o caso…

    O fato é que o modelo B&S é um modelo muito restritivo, com inúmeras suposições que não se verificam no mundo real e que por conseguinte, tornam os resultados do modelo pouco acurados. Entretanto este é um modelo muito conhecido, de fácil assimilação por parte dos agentes de mercado e que virou a língua franca nos mercados de derivativos. Se todos os traders conversarem em termos do modelo B&S, todos se entenderão, mesmo que internamente cada um possua seu próprio modelo de apreçamento.

    Entre as características tipicamente observadas em smiles (e superfícies) de volatilidades pode-se citar:

    • As volatilidades implícitas variam conforme o strike e prazo de expiração
    • Smiles apresentam skew. Maior inclinação em uma das asas, representando uma maior probabilidade daqueles strikes acontecerem
    • Smiles de equity tipicamente são negativos
    • Mercados diferentes apresentam padrões de smile diferentes

    Mercados cambiais

    Opções sobre moedas possuem tipicamente um smile de volatilidade conforme mostrado na figura 1 abaixo. A volatilidade implícita é relativamente baixa para opções ATM. Esta torna-se progressivamente maior quando a opção se move para dentro do dinheiro ou para fora.

    Smile de volatilidade típico de um mercado cambial.

    Figura 1: Smile de volatilidade típico de um mercado cambial.

    Caso a distribuição dos preços do ativo subjacente, neste caso uma taxa de câmbio fosse perfeitamente log-normal como no modelo B&S, o smile não teria esta curvatura. Desta forma podemos afirmar que o mercado, ao precificar as opções, acredita que a distribuição deste ativo possui caudas com maior densidade que supõe a log-normal, existem maiores probabilidades de retornos muito baixos ou muito altos.

    Mercados de equities

    Nos mercados de equities, ações, índices de ações e ETFs, por exemplo, o smile apresenta uma característica de assimetria (skew, em inglês) negativa. A asa esquerda (parte onde as puts estão fora do dinheiro) apresenta valores de volatilidade implícita muito maiores que suas contrapartes no lado das calls. Este comportamento reflete a percepção de mercado de uma maior probabilidade de grandes perdas nas ações que altos ganhos, gerando portanto, uma distribuição de preços assimétrica. Como existe uma maior probabilidade de perdas extremas, o seguro para estas, ou seja, uma put é relativamente mais cara que uma call.

    Smile de volatilidade típico de uma ação ou índice de ações.

    Figura 2: Smile de volatilidade típico de uma ação ou índice de ações.

    Smile como forma de precificação

    Analisando a equação de B&S com a parametrização para \(d1\) e \(d2\) dada no início deste artigo é possível verificar que existe uma relação direta entre volatilidade implícita e preço de uma opção, seja esta uma call ou put.

    Como \(d1\) é estritamente crescente em \(\theta\) e \(d2\) é estritamente decrescente e ao mesmo tempo o preço de uma opção é crescente em d1 e decrescente em d2, logo, temos uma relação direta entre o preço de uma opção e sua volatilidade implícita para uma dada maturidade. Em outras palavras, em um smile, tudo o mais constante, quanto maior a volatilidade implícita maior o preço da opção naquele strike.

    Outra forma de verificar esta relação é perceber que a grega Vega, que é calculada da mesma forma para calls e puts, é sempre positiva. Ou seja, um aumento no valor da volatiliade sempre leva a elevações no preço de uma opção.

    Desta forma é normal entre os praticantes de mercado fazer a precificação de opções em termos de “pontos de volatilidade” e não em valores monetários propriamente ditos. Isto porque o modelo B&S, apesar de não ser o modelo correto (nenhum é) para a precificação de opções, é conhecido e de fácil entendimento para todos. Então todos os praticantes podem fazer suas cotações em termos de volatilidades implícitas, que são extraídas de opções baunilhas com o modelo B&S, e somente na hora de fechar um negócio e liquidar o pagamento, o preço efetivo a ser pago é acordado entre as partes.

    Conclusão

    O modelo de Black-Scholes-Merton, pode ser considerado a pedra fundamental para a precifição de opções. Entretanto, este modelo apresenta uma séries de limitações que fazem com que os praticantes de mercado utilizem outras técnicas neste mercado. Uma destas é o uso do smile de volatilidade e sua interpretação como forma de precificar opções e extrair informações implícitas nos preços.

    A assimetria do smile e suas asas informam que as distribuições de probabilidades para o ativo subjacente não são exatamente log-normais, e podem apresentar discrepâncias significativas, especialmente nas caudas da distribuição que muito interessam a gestão de risco, por exemplo.

    Posted by Rafael Bressan in Derivativos & Riscos, 0 comments