Derivativos & Riscos

Mercado Futuro de Cupom Cambial (DDI e FRC) - Esse artigo tem por objetivo explorar o funcionamento do MERCADO FUTURO DE CUPOM CAMBIAL, o qual pertence ao complexo de… Continue reading →
Aplicação de ferramentas econométricas utilizando a linguagem R: Value-at-Risk (VaR), abordagem delta-Normal vs. abordagem GARCH - Introdução    O objetivo desse artigo é desenvolver uma linha de raciocínio da construção do processo de estimação de um… Continue reading →
ECONOMIA COMPORTAMENTAL E A SOBRE-REAÇÃO DOS MERCADOS -             Provavelmente já aconteceu de você estar sentado no sofá assistindo TV, após o almoço… Continue reading →
Análise de Risco de um Portfólio - Introdução Neste artigo será aplicado algumas técnicas de análise de risco em um portfólio de ações, com o intuito de… Continue reading →
WallStreetBets e a dinâmica do Short Squeeze - Ao final de janeiro de 2021, os noticiários e redes sociais passaram a ficar tomadas de comentários acerca do aumento… Continue reading →
Contratos futuros no agronegócio - O primeiro registro sobre derivativos de risco ocorreu cerca de 2500 anos atrás. O famoso filósofo Tales de Mileto usou… Continue reading →
Índice Beta Índice Beta - O que é o Índice Beta? Um dos indicadores mais utilizados e mais famosos para análise do risco de um… Continue reading →
Fluxo de Caixa em Risco - Na trajetória sobre quantificação de riscos analisa-se também ativos não financeiros, para isso aborda-se, neste artigo, o modelo denominado Cash-Flow-at-Risk… Continue reading →
Utilização do Modelo GARCH(1,1) na Previsão de Volatilidade - O objetivo deste artigo é trazer um entendimento sobre o que se trata o modelo GARCH e apresentar uma aplicação… Continue reading →
RAPMs – Markowitz, CAPM e indicadores de risco e retorno - RAPMs - Risk Adjusted Performance Measures - Parte 1   Diversos artigos do núcleo de Risco & Derivativos abordam a… Continue reading →
Stress Testing Financeiro - No controle de riscos, medidas estatísticas como o VAR e o beta nos ajudam a estabelecer as probabilidades do comportamento… Continue reading →
VaR Tools - Risco em Portfólio: Métodos Análiticos No artigo, Value At Risk, foi introduzido o conceito por trás dessa medida de risco… Continue reading →
Valor em Risco de Índices Setoriais na Bovespa - Neste artigo serão analisadas as séries de retornos de seis principais índices de ações de setores da Bovespa. Foram escolhidos… Continue reading →
Medidas de Risco com a Teoria do Valor Extremo - Teoria do valor extremo (EVT da sigla em inglês) é um ramo da estatística que lida diretamente com eventos raros,… Continue reading →
Risco de mercado, princípios de Basileia e a teoria do valor extremo - Neste artigo iniciaremos uma discussão sobre a utilização da teoria do valor extremo - EVT para o cálculo de risco… Continue reading →
Expected Shortfall - Expected Shortfall como substituto ao VaR No artigo anterior foi apresentada a medida de risco conhecida como Value-At-Risk (VaR), nele… Continue reading →
Valor em Risco - História do VaR O termo “Valor em Risco” derivado do inglês Value at Risk (VaR), foi introduzido no vocabulário financeiro… Continue reading →
Betting against beta - Betting agains beta (BAB), ou apostando contra o beta é uma conhecida estratégia de investimento que surgiu com o trabalho… Continue reading →
Estratégias Iniciais no Mercado de Opções - Se você anda pesquisando sobre o mercado financeiro ou possui particular interesse nesse campo, com certeza você já esbarrou na… Continue reading →
Precificação de opções via redes neurais - Em 1973, Fischer Black, Myron Scholes e Robert Merton publicaram uma maneira analítica para precificar opções, de modo que se… Continue reading →
Algo trading com Quantopian - Abriremos nossas discussões sobre algorithmic trading, ou algo trading para os iniciados, fazendo um review da plataforma mais popular atualmente,… Continue reading →
Superfície SVI - Superfície SVI, ou somente SSVI é uma generalização do modelo SVI de (Gatheral 2004) que busca solucionar o problema de… Continue reading →
Calibrando um SVI - Neste post iremos mostrar como fazer uma calibração de um smile SVI baseado nos trabalhos de (Gatheral 2004) e (De… Continue reading →
Métodos de calibração de superfícies de volatilidade - 2019/02/08 Métodos de calibração são as diferentes formas existentes entre “interpolação”, “suavização” e “parametrização” que podem ser utilizadas para fazer… Continue reading →
Superfícies de Volatilidade - 2019/02/01 Já mostramos em artigos anteriores, processos estocásticos em finanças, o modelo de Black&Scholes e, como na realidade dos mercados… Continue reading →
Smile de Volatilidade parte 2 - 2019/01/25 Daremos continuidade ao artigo anterior sobre o smile de volatilidade. Falaremos sobre a estrutura a termo da volatilidade implícita,… Continue reading →
Smile de Volatilidade - Smile de Volatilidade - Superfície de Volatilidade 2019/01/18 A volatilidade instantânea, \(\sigma\), do ativo subjacente é a única variável no… Continue reading →
O Modelo Black-Scholes-Merton - Clique no link abaixo para abrir o post. Modelo Black-Scholes-Merton Continue reading →
Simulação de Monte Carlo - Em artigo anterior, sobre processos estocásticos, fizemos uso de uma poderosa ferramenta computacional, frequentemente utilizada em finanças para fazer simulações.… Continue reading →
Processos Estocásticos para Finanças: uma introdução - Neste artigo abordaremos um assunto técnico, mas muito utilizado e de fundamental importância para a precificação de instrumentos derivativos. Será… Continue reading →
Introdução ao Mercado de Opções - Este artigo apresenta: Características do mercado de opções; Vocabulário técnico utilizado em contratos do tipo; Diferentes tipos de contratos de… Continue reading →
Conheça o modelo Fama French 3 Fatores - Apesar de o modelo de precificação de ativos CAPM de Sharpe-Lintner ser o mais conhecido no mundo das finanças e… Continue reading →
Stress Testing Financeiro

Stress Testing Financeiro

No controle de riscos, medidas estatísticas como o VAR e o beta nos ajudam a estabelecer as probabilidades do comportamento de um portfólio diante de condições esperadas, baseando-se em dados históricos. Contudo, nem sempre os eventos do mercado ocorrem de maneira previsível. Certas vezes, a movimentação é tão brusca que sua chance de ocorrer seria quase nula em uma distribuição de retornos normal, mas sabemos, através das diversas crises mundiais das últimas décadas, que esses eventos são muito mais prováveis do que a curva nos mostra. Em virtude disso, faz-se necessário a existência de um método para controlar o risco nas situações de perdas extremas. Esse método é o stress test.

Um teste de estresse financeiro é um modelo não estatístico de controle de riscos que utiliza a simulação computacional para testar um portfólio sob mudanças bruscas e improváveis em fatores determinantes para o valor da carteira. O método é considerado não estatístico porque ele não busca estabelecer a probabilidade das perdas, ele apenas reconhece que essas perdas são possíveis e foca no impacto gerado caso elas ocorram. Desse modo, o gestor pode identificar vulnerabilidades que não seriam detectadas nos cenários base previstos e tomar medidas de hedge contra os cenários que ele considerar importante estar protegido.

Entre esses cenários, através de uma análise daquilo que é relevante para o negócio, o gestor deve observar para quais situações a empresa quer estar preparada e para quais não vale a pena se preocupar. Entre os possíveis eventos, o gestor pode querer se proteger de, por exemplo, um tsunami no Japão, um terremoto nos Estados Unidos, uma guerra na região do Golfo Pérsico ou uma pandemia global.

Ademais, observando as movimentações do mercado em resposta a crise do coronavírus, temos um caso prático da importância do stress test, já que, apenas no mês março de 2020, tivemos 6 movimentações que excederam 10% no índice Bovespa, valor sete vezes maior que o desvio padrão dos movimentos dos últimos 10 anos. Tal baixa no índice levou muitos fundos a exibirem quedas catastróficas no valor de suas cotas, e aqueles que possuíam uma proteção contra os cenários adversos conseguiram controlar essas perdas.

COMO É APLICADO NO MUNDO?

Companhias que gerenciam ativos e investimentos usam os testes de estresse regularmente para controlar o risco de suas carteiras e, a partir disso, tomar as decisões necessárias para mitigar possíveis perdas. Além de ser utilizado na tomada de decisão de grandes gestoras, projetos de empresas e bancos, os testes de estresse tornaram-se obrigatórios no controle mundial de riscos e passaram a ser exigidos dos bancos que desejam atuar internacionalmente, além da legislação local de certos países que exigirá os testes dependendo do tamanho da instituição. Nesse sentido, as crises mundiais recentes trouxeram à tona o risco excessivo ao qual as instituições financeiras estavam se submetendo e a regulamentação passou a evoluir de acordo.

Após a crise de 2008, novas normas regulatórias surgiram com foco em *stress testing *e adequação de capital, dentre elas temos o Dodd-Frank Act de 2010, que está em vigor até hoje. A norma impõe o uso de testes de estresse na estrutura de capital dos bancos estadunidenses e os cenários de teste são estabelecidos pelo corpo regulatório do FED e supervisionados por comitês independentes. O Federal Reserve gera três cenários – um otimista, um pessimista e um extremamente pessimista – e as instituições devem exibir planos de resposta aos três. Além disso, é pedido que os bancos gerem seus próprios cenários para garantir o controle de riscos individual que não consta nos cenários estabelecidos pelo FED.

Essas regras afetam, pela análise do Comitê de Estabilidade Financeira feita em 2018, 22 bancos mundiais considerados *too big to *fail. Essa lista incorpora os bancos com atuação ao redor do globo que gerenciam mais de U$50bi em ativos.

Dado o conceito do stress test como uma ferramenta complementar no controle de riscos e sua aplicação no contexto mundial, entraremos em detalhes em alguns dos modelos.

MODELOS DE ANÁLISE DE CENÁRIO

Um teste de estresse é composto de três etapas fundamentais: a primeira sendo a definição de um cenário, a segunda a modelagem dos fatores desse cenário e a última o estabelecimento de políticas de resposta baseadas nos dados obtidos.

Tratando da primeira fase de um stress test, existem duas aproximações possíveis, que são definir um cenário hipotético ou basear-se em um cenário histórico de uma crise passada. A vantagem deste é que não é preciso pensar em problemas como a correlação entre fatores no seu cenário – ou seja, toda a segunda etapa do teste se torna imediata – uma vez que, como o evento já ocorreu, o gestor possui todos os dados e variações de preço e índices da época. Por causa disso, o método histórico é mais simples de aplicar o que o torna muito utilizado.

A outra maneira de se definir um cenário é estudar o portfólio, buscando entender quais fatores de risco mais o afetam e gerar um cenário no qual esse fatores seriam negativamente impactados. A partir disso, é possível ter o controle de risco para um cenário possível específico que seria desastroso para a empresa, mas que ainda não está nos livros históricos. O grande problema desse método é saber como tratar as diversas variáveis se movimentando em todas as direções. Afinal, mesmo em um cenário extremo, não se espera que todos os fatores se desloquem na direção mais negativa à carteira, graças a correlação. Buscando resolver esse problema, o analista pode usar os seguintes modelos:

Cenários Unidimensionais

  • Testes de Sensibilidade – são a metodologia tradicional de análise de cenários e focam em apenas uma variável, anulando assim o problema da correlação multidimensional. Os testes mais comuns envolvem movimentações em um único dia de fatores fundamentais, como uma movimentação de 1% na curva de juros, uma alta de 20% na volatilidade implícita, quedas ou altas de 10% no índice da bolsa ou alteração de 20% no câmbio da moeda local contra o dólar.

Cenários Multidimensionais

  • Método da Movimentação de Variáveis – é um modelo extremamente conservador, no qual movimenta-se diversos fatores para cima e para baixo em um certo número de desvios padrão. Feito isso, busca-se a combinação de movimentos que geraria o pior resultado possível ao valor da carteira e assume-se este como o resultado do stress test. Como comentado anteriormente, essa combinação, por desconsiderar a correlação, faz com que as perdas observadas sejam muito maiores do que em um cenário real.
  • Método de Cenários Condicionais – possui uma elaboração sistemática que incorpora a correlação entre as variáveis. Para isso, considera-se dois conjuntos, um conjunto R* composto por variáveis chave sujeitas a movimentos extremos, que serão dados pelo cenário estabelecido, e outro conjunto R composto das demais variáveis, que não está sujeito a nenhuma movimentação inicial. A partir disso, faz-se uma regressão das variáveis R nas variáveis R* e obtemos a variação de R a partir do cenário hipotetizado, através da correlação. Desse modo, conseguimos avaliar o portfólio antes e depois, contudo, essa análise dependerá de uma boa escolha pelo gestor das variáveis chave (R*) e das demais (R), o que sempre parte do entendimento da carteira em questão.

STRESS TESTING APLICADO

Agora que entendemos as metodologias para os testes de estresse, estaremos aplicando o conceito para o risco de uma carteira hipotética nos principais dias de perdas durante a atual crise do coronavírus. Isso implica que estaremos utilizando o método histórico, já que todas as movimentações já são conhecidas.

Abaixo, temos a posição de nossa carteira hipotética, divida entre Ações, moeda, bolsa internacional e títulos públicos:

A partir disso, vamos testar essa carteira nas maiores perdas ocorridas na bolsa brasileira durante a crise, ocorridas nos dias 9, 12, 16 e 18 de março com quedas no índice de 12,5%, 15%, 14,9% e 10,9% respectivamente. Testando o portfólio mencionado nesses dias, a carteira apresentou os seguintes resultados:

Nota: Ativo representa a variação percentual do ativo no dia, PP representa o efeito que o ativo teve na variação do portfólio e Total é a soma das variações ponderadas dos ativos, o resultado do portfólio no dia.

Observa-se que a carteira teve uma performance bem superior ao Bovespa, devido a diversificação em ativos de crise como o dólar e o ouro e a posição em renda fixa. Contudo, se compararmos o resultado do portfólio com o VaR esperado dessa carteira de -0,98% com 99% de certeza, vemos que as perdas excederam muito o esperado em todos os dias. Além disso, o desvio padrão dos retornos da carteira foi de 0,42%, ou seja, nos dias da crise, as perdas variaram de dez a até quase vinte vezes o desvio padrão.

Partindo de uma distribuição normal para calcular a probabilidade do ocorrido, calcula-se que o evento do dia 9 de março – que é o mais otimista dentre as possibilidades – deveria ocorrer uma vez a cada 360 bilhões de bilhões de anos. Não é preciso dizer que qualquer gestor sensato atribuiria uma chance muito maior de ocorrer uma pandemia global do que os retornos da curva normal tentam nos dizer. Essa chance continuaria não sendo muito alta, porém, com o stress test, é possível ter uma ideia do que aconteceria e tomar as medidas de hedge necessárias.

Por fim, concluída a parte matemática de um teste estresse, vamos para a última etapa, as políticas de resposta.

POLÍTICAS DE RESPOSTA

Realizados todos os cálculos do teste, a pergunta que surge é o quê fazer caso o tamanho das perdas esperadas seja grande de mais. Em muitos casos, os resultados de um teste são tão catastróficos que eles passam a ser ignorados e tomados como irrelevantes. É claro que empresa alguma consegue estar preparada para lidar com os infinitos cenários que o mundo pode oferecer. Porém, existem cenários relevantes e possíveis para cada setor que devem ser considerados para tomar medidas de resposta. Posto isso e como colocado já anteriormente, a escolha dos eventos deve partir da experiência prévia da gestão, elencando situações que mais fazem sentido e são potencialmente prejudiciais à firma.

Estabelecidas as posições que a empresa quer proteger, existem inúmeras medidas que podem ser tomadas pelo gestor para se proteger dos cenários, entre elas:

  • Acúmulo de capital suficiente para pagar o prejuízo possível;
  • Comprar proteção de seguros para os eventos analisados;
  • Modificar o portfólio buscando reduzir o impacto de um evento específico, reduzindo a exposição ao risco ou diversificando através de ativos;
  • Reestruturar o negócio ou o produto buscando melhor diversificação;
  • Desenvolver um plano de ações para caso o cenário comece a se desenvolver;
  • Preparar fontes de financiamento alternativas caso a liquidez do portfólio comece a cair.

Dessa forma, conclui-se todas as etapas da metodologia do stress test. Vimos que o teste de estresse é um instrumento não estatístico para controle de riscos e tratamos de exemplos práticos de como ele complementa o Value at Risk, que falha em captar perdas muito acima do normal. Além disso, mostramos que esse plano para situações adversas tem o papel fundamental de garantir a sobrevivência da instituição aos cenários elencados.


REFERÊNCIAS

JORION, Philippe. Financial Risk Manager Handbook. 3. ed. New Jersey: John Wiley & Sons Inc, 2007. p. 241-264
JORION, Philippe. Portfolio Risk: Analytical Methods. Value At Risk: The New Benchmark for Managing Financial Risk. 3. ed. New York: Mcgraw Hill Companies, 2007. p. 357-377
Key Points From the 2015 Comprehensive Capital Analysis and Review (CCAR). Harvard Law School, 22 de março de 2015. Disponível em: https://corpgov.law.harvard.edu/2015/03/22/key-points-from-the-2015-comprehensive-capital-analysis-and-review-ccar. Acesso em: 15 de abril de 2020.
Comprehensive Capital Analysisand Review 2015:Assessment Framework and Results, março de 2015. Disponível em: https://www.federalreserve.gov/newsevents/pressreleases/files/bcreg20150311a1.pdf. Acesso em: 15 de abril de 2020.

Posted by Leonardo de Sá Nicolazzi in Derivativos & Riscos, 3 comments
VaR Tools

VaR Tools

Risco em Portfólio: Métodos Análiticos

No artigo, Value At Risk, foi introduzido o conceito por trás dessa medida de risco e foram abordados conceitos como origem, técnicas de estimação e até mesmo suas deficiências. Neste artigo, iremos trabalhar em cima dessa medida trazendo o conceito e aplicação de outras ferramentas que permitem gestores controlarem melhor os riscos de um portfólio.

Essas ferramentas, denominadas VaR Tools, são essenciais para que os investidores possam identificar os ativos que mais contribuem para o risco total de uma carteira. Também, são usadas para chegar no melhor hedge da carteira, e selecionar os ativos de risco alinhados com melhores retornos.

Portfólio

Em termos gerais, um portfólio é caracterizado como um conjunto de aplicações do investidor, que reúne todos os ativos financeiros escolhidos para realizar investimentos. Esse portfólio permite a diversificação de ativos bem como a minimização de riscos, trazendo mais ganhos ao investidor e menos volatilidade do capital. E se as posições desse portfólio são fixadas durante um período, a taxa de retorno do portfólio é uma combinação linear dos retornos dos ativos subjacentes, onde os pesos são dados pelos montantes investidos no começo do período.

A taxa de retorno do portfólio de t para t + 1 pode ser definida como:

\[ R_{p,t+1}=\sum_i^Nw_{i}R_{i,t+1} \]

Sabendo que N é o número de ativos \(R_{i,t+1}\), é a taxa de retorno do ativo i, e \(w_{i}\) é o peso do ativo.

VaR Tools

O Value At Risk, inicialmente, foi desenvolvido como uma medida para mensurar o risco de um portfólio. Porém, há muito mais por trás do VaR do que uma mensuração de um simples número.

Com o tempo, os gestores puderam encontrar maneiras de usar o VaR para realmente gerir riscos, e foi levantado a pergunta: “Que posições eu devo alterar na minha carteira, para que o VaR seja mais eficiente?”

Para responder a esta pergunta, entramos no propósito deste artigo: as VaR Tools, que incluem a marginal, a incremental e a componente.

Marginal VaR

Os VaRs individuais dos ativos são ineficientes para mensurar as mudanças de posições em portfólios, por conta que eles não levam os poderes da diversificação. O que realmente importa é o VaR individual de cada ativo levando em conta a diversificação, que pode ser encontrado através das VaR Tools.

Tendo em vista a ineficiência do VaR individual dos ativos na mensuração de mudanças de posições num portfólio e a volatilidade no retorno de um ativo, passa-se a analisar a contribuição dele para o risco do portfólio utilizando o Marginal VaR.

Um portfólio hipotético existente, é feito com um número N de ativos numerados de j = 1, …, N. Esse portfólio é alterado quando adicionamos uma nova unidade de um ativo i. E para ter conhecimento do impacto dessa adição de unidade, pode ser calculado a contribuição “marginal” do risco.

Essa contribuição marginal, chamada de Marginal VaR, habilita os gestores de riscos a estudarem os efeitos da adição ou subtração de posições de investimento em um portfólio.

E dado que o VaR é afetado pela correlação dos ativos, não é suficiente considerar os ativos individualmente. Eles devem ser comparados com o portfólio total para determinar a contribuição real.

Em teoria, podemos explicar o marginal VaR como a mudança no portfólio VaR resultado da adição de uma unidade de um certo componente.

Colocando em fórmulas, podemos correlacionar o marginal VaR \(\triangle VAR_{i}\) e o Beta \(\beta\), que mede a contribuição de um ativo para o risco total do portfólio, como:

\[ \triangle VaR_{i}=\frac{∂VAR}{∂x_{i}}=\alpha(\beta_{i}\sigma_{p})=\frac{VAR}{W}x\beta_{i} \]

O marginal VaR pode ser usado com diferentes formas e propósitos de gerenciamento de risco. Pode-se supor, como exemplo, que um investidor tenha uma carteira com diferentes tipos de ativos e ele deseje reduzir o VaR. Ele pode ranquear todos os marginais VaRs e pegar aquele com maior \triangle VAR porque será o que trará o maior efeito de hedging.

Incremental VaR

A metodologia do marginal var pode ser estendida para calcular o total impacto de uma mudança em um portfólio p. Um novo trade é realizado, agora através da adição de uma posição a.

Deve ser medida a adição deste novo trade, para chegar no incremental var, através da medição do VaR do portfólio inicial \(VAR_{p}\) juntamente com o cálculo do VaR com a nova posição \(VAR_{p+a}\). O var incremental é obtido usando a fórmula abaixo:

\[ Incremental VaR=VaR_{p+a}- VaR_{p}\]

Esse antes e depois é bastante informativo. Se o VaR diminuir, estamos fazendo um hedging, ou redução de risco, se o VaR aumentar estamos aumentando o risco.

Um grande ponto dessa técnica é que ela requer uma reavaliação total do novo portfólio VaR com o novo trade a. E isso pode ser bastante difícil para grandes portfólios, por que pode demorar para calcular o novo VaR.

Mas, caso o gestor prefira uma melhor aproximação do resultado real para poupar tempo de computação, pode-se tomar um atalho. O Incremental VaR é capaz de ser calculado utilizando-se do marginal VaR:

\[ Incremental VaR=(∆VaR)` α\]

Então estaríamos trocando um tempo de computação por uma acurácia menor.

Componente VaR

Outra VaR Tool extremamente necessária para a gestão de risco é a Component VaR.

Ao invés disso, precisamos de um aditivo de decomposição do VaR que reconhece os poderes de diversificação. E, por isso, utilizamos a marginal VaR como uma ferramenta para medir a contribuição de risco de cada ativo existente no portfólio.

\[ Component VaR=(∆VaR)` w_i W\]

O Component VaR indica quanto do portfólio VaR irá se alterar, aproximadamente, caso um componente seja removido do portfólio. Os componentes do VaR adicionados juntos dão o valor do portfólio total:

\[ VaR=CVaR_1+ CVaR_2+⋯+ CVaR_N=VaR\sum_{i=1}^Nw_i β_i)\]

O cálculo pode ser simplificado tomando em consideração que \(\beta_{i}\) é igual a correlação \(\rho\) vezes o desvio padrão do ativo \(\sigma_{i}\) dividido pelo desvio padrão do portfólio \(\sigma_{p}\).

\[ CVaR_i=VaRw_{i}β_i= VaR_iρ_i\]

Sumarização das VaR Tools

O gráfico abaixo, traz uma sumarização das VaR Tools. Na posição de 1 milhão, o VaR do portfólio é de $257.738. O Marginal VaR é a mudança no VaR devido a adição de $1 em euro. Isso é representado pela inclinação da linha reta que é tangente ao VaR da curva.

O Incremental VaR é a mudança no VaR devido a eliminação da posição em euro, que é de $92,738 e medido ao longo da curva. Isso é aproximado com o Componente VaR, que é simplesmente o marginal VaR vezes a posição corrente de 1 milhão, ou $152,108.

O gráfico também mostra que a posição de melhor hedge seria com uma posição zero em euro. Essas mudanças podem ser todas vistas através da tabela abaixo:

A screenshot of a cell phone Description automatically generated

Esta tabela além de sumarizar o gráfico também traz a importância do uso do Marginal VaR e Component VaR. A coluna da marginal VaR pode ser usada para determinar como diminuir o risco. Dado que o marginal VaR do euro é superior ao do dólar canadense, cortar a posição em euro pode ser muito mais efetivo do que cortar a posição em dólar canadense.

Mnimização de Risco de Portfólio

Para minimizações de risco em portfólio, as posições devem ser cortadas onde o marginal VaR é o maior, assim se mantém um portfólio adequado. Se um portfólio está com risco alto e precisa ser reinvestido, as posições que apresentarem menor marginal VaR podem ser adicionadas para fazer as primeiras mudanças.

Esse processo pode ser repetido até o ponto que o portfólio chegar no risco mínimo, nesse ponto todos os VaR marginais e os betas dos portfólios devem ser iguais:

\[ ∆VaR_i= VaR\div Wβ_i=constante\]

A tabela abaixo ilustra esse processo com duas posições em um portfólio. A posição original é $2 milhões em dólares canadenses e $1 milhão em euro, gerando um VaR de $257,738, ou volatilidade do portfólio de 15,62 por cento. O marginal VaR do euro é de 0.1521, que é maior do que o do dólar canadense.

A screenshot of a cell phone Description automatically generated

Como resultado, a posição em euro deve ser cortada adicionando posição em dólar canadense. A tabela mostra, a posição final com o risco diminuído. O peso do euro foi diminuído de 33,33 para 14,79 por cento. A volatilidade do portfólio foi diminuída de 15,62 para 13,85 por cento. E também é possível verificar que o beta de todas as posições é igual quando o risco é minimizado.

Risco e Retorno

Até então foi discutido medidas para se calcular o risco em portfólios. O Próximo passo é considerar o retorno esperado de um portfólio, assim como o risco.

É definido \(E_{p}\) como o retorno esperado do portfólio. Isso é a combinação linear dos retornos esperados de cada componente da posição. E para simplificar os cálculos, podemos tomar como base que todos os retornos dos ativos serão considerados como a taxa livre de risco.

\[ E_p \sum_i^Nw_iE_ie\]

Pode-se definir que a melhor combinação de portfólios é aquela que minimiza o risco, mediante diferentes níveis de retornos esperados. Isso é definido com a fronteira eficiente, que é representada na linha sólida do gráfico.

Supondo que o objetivo principal é de maximizar o retorno esperado em relação ao risco, pode-se, usar a medida de risco ajustada, Sharpe Ratio:

\[ SR_p=E_p\div \sigma_p\]

A pergunta que pode ser feita é: “Como mudamos da posição atual para o portfólio ótimo?”

Nós agora queremos, para chegar no portfólio ótimo, o ratio em que todos os retornos esperados dos marginais VaRs devem ser iguais. Isso pode ser demonstrado através da fórmula abaixo:

\[ E_{i}/∆VaR_{i}=E_{i}/β_{i}=constante\]

A tabela abaixo mostra nossa posição em duas moedas, para cada assumimos um \(E{1}\) = 8 por cento e um \(E_{2}\) = 5 por cento. A posição original tem um Sharpe Ratio de 0.448, e o ratio do dólar canadense é de 0.1301. Isso implica que a posição em dólar canadense deve ser aumentada para melhorar a performance do portfólio.

Na melhor posição, o peso do dólar canadense foi de 66,67 para 90,21 por cento. A Sharpe Ratio do portfólio foi aumentada substancialmente de 0.448 para 0.551. E é possível verificar que as ratios são idênticas para os dois ativos no modelo otimizado.

Exemplo em Prática

Considere um portfólio com duas moedas estrangeiras, o dólar canadense (CAD) e o euro (EUR). Assuma também que essas duas moedas não são correlacionadas e apresentam uma volatilidade contra o dólar de 5% e 12%. Esse portfólio tem investido 2 milhões em dólares canadenses e 1 milhão em euro.

Realizando os cálculos para encontrar o VaR individual, e não diversificado, encontramos:

\[ [VAR_1 \ VAR_2 ]= [1.65 \ x \ 0.05 \ x \ 2 milhões\quad 1.65 \ x \ 0.12 \ x \ 1 milhão] = [165,000 \quad 198,000]\]

Esses números somados, nos garantem um VaR não diversificado de $363,000, o que é maior que o VaR do portfólio diversificado de 257,738, graças aos efeitos da diversificação.

Nós agora queremos adicionar uma posição aumentando em US$10,000 em dólar canadense. Primeiro, nós iremos calcular o método do VaR marginal.

\[ ∆VAR= α \ cov(R,R_P))\divσ_P =1.65 \ [$0.0050 \quad 0.00144]\div$0.156= [0.0528 \quad 0.1521]\]

Assim, nós acrescentamos a posição inicial com $10,000, o incremental VaR é:

\[ (∆VAR)`α= [0.0528 \quad 0.1521][$10,000 \quad 0 ]=0.0528 \ x $10,000+0.1521 \ x \ 0=$528\]

E ainda podemos comparar esse valor de incremental VaR obtendo a partir da reavaliação total da carteira. Adicionando $0.01 milhão na posição inicial, encontramos:

\[ \sigma_{p+a}^2W_{p+a}^2= [$2.01 \quad $1][0.05^2 \quad 0 \quad 0 \quad 0.12^2 ][$2.01 \quad $1]\]

O que nos dá um \(VAR_{p+a}\) = $258,267. Em relação ao \(VAR_{p}\) inicial de $257,738, o exato incremento foi de $529. Note o quão perto o cálculo do incremental VaR usando o marginal se aproximou do cálculo com a reavaliação total. Essa aproximação linear acabou sendo excelente por conta da mudança de posição ser bem pequena.

Continuando com essas duas posições, podemos calcular o componente VaR do portfólio usando \(CVAR_{i}=\triangle VAR_{i}x_{i}\) que é:

\[ [CVAR_1 \quad CVAR_2]=[0.0528 \ x \ $2 milhões \quad 0.1521 \ x \ 1 milhão]= [$105,630 \quad $152,108]=VAR[0.41 \quad 0.59]\]

Se verifica que estes dois componentes somados juntos dão o total valor de VaR de $257,738. O maior componente é o euro, que apresenta a maior volatilidade. Podemos calcular a mudança no VaR se a posição do euro for zerada. Como o portfólio apresenta somente dois ativos, o novo VaR sem a posição em euro é simplesmente o VaR individual da posição em dólar canadense, . O VaR incremental da posição em euro é de ($257,738 – $165,000) = $92,738.

Conclusões

Durante este artigo foi mostrado como se manejar risco utilizando de medidas analíticas conhecidas como VaR Tools.

A partir delas, vimos que o VaR é muito mais do que simplesmente uma medida de um ativo, e pode promover maneiras de gerenciamento de risco através das ferramentas mostradas.

No final, risco é apenas um dos componentes do processo de gerenciamento de portfólios. Também deve-se atentar aos retornos esperados e que o papel do gerente de portfólio é conseguir encontrar a melhor combinação entre esses dois componentes, risco e retorno.

Referências:

JORION, Philippe. Portfolio Risk: Analytical Methods. In: JORION, Philippe. Value At Risk: The New Benchmark for Managing Financial Risk. 3. ed. New York: Mcgraw Hill Companies, 2007. p. 159-185.

Posted by Vinícius Custódio in Derivativos & Riscos, 0 comments
Valor em Risco de Índices Setoriais na Bovespa

Valor em Risco de Índices Setoriais na Bovespa

Neste artigo serão analisadas as séries de retornos de seis principais índices de ações de setores da Bovespa. Foram escolhidos os quatro maiores índices setoriais pelo critério de valor de mercado ao final de março de 2018, índices Financeiro (IFNC), Consumo (ICON), Industrial (INDX) e Materiais (IMAT), além do índice de Governança (IGCX) e o próprio índice Bovespa (IBOV). Os retornos coletados foram entre as datas de 01/01/2009 a 31/12/2013 para o período considerado dentro da amostra, no qual são feitas algumas análises preliminares. O período fora da amostra, de onde são retirados os resultados de backtest se estende de 01/01/2014 a 08/05/2018. Em dias sem negociação nos mercados, os períodos iniciam-se na data útil seguinte e terminam em data útil imediatamente anterior.

No primeiro artigo desta sequência foi apresentada uma vasta revisão de literatura sobre a EVT e suas aplicações em finanças, com enfoque especial ao gerenciamento de risco. No segundo artigo a Teoria do Valor Extremo – EVT foi formalizada e apresentadas as equações para o cálculo tanto do VaR quanto do ES para um ativo financeiro. Também foi abordada a diferença entre medidas incondicionais e condicionais de risco. No presente artigo faremos uma aplicação da EVT para o cálculo do VaR condicional dos seis índices da Bovespa e faremos uma comparação deste modelo com o conhecido Riskmetrics.

A tabela 1 apresenta algumas das estatísticas descritivas mais importantes para as séries de retornos dos ativos no período completo, dentro e fora da amostra. É possível verificar que os retornos não podem ser considerados normais, com a estatística de Jarque-Bera rejeitando a hipótese nula e com o alto grau de curtose em excesso verificado para todos os índices analisados.

Também é possível verificar a grande autocorrelação serial entre os quadrados dos retornos, uma proxy para a autocorrelação das variâncias, através da estatística \(Q^2(10)\) de Ljung-Box, o que corrobora os fatos estilizados de séries financeiras, vide Cont (2001).

Tabela 1: Estatísticas descritivas dos retornos (amostra completa de 02/01/2009 08/05/2018 ).
Descritivas IBOV ICON IFNC IGCX INDX IMAT
Média 0.00034 0.00069 0.00066 0.00052 0.00047 0.00043
Máximo 0.06929 0.05183 0.09295 0.06188 0.06388 0.07572
Mínimo -0.09211 -0.07446 -0.12288 -0.08837 -0.07370 -0.09079
Desvp 0.01497 0.01148 0.01640 0.01269 0.01247 0.01820
Assimetria -0.03784 -0.11441 0.00658 -0.16642 -0.01978 0.08989
Curtose exc. 2.13179 2.23608 3.23913 3.06149 2.43070 1.37705
Jarque-Bera 439.98*** 488.47*** 1013.68*** 916.29*** 571.28*** 186.72***
\(Q^2(10)\) 122.14*** 104.32*** 97.44*** 146.68*** 256.11*** 230.39***
N.obs 2311 2311 2311 2311 2311 2311

Na figura 1 são visualizadas as séries de retornos logarítmicos em estudo. Por inspeção visual simples é possível verificar a heterocedasticidade destes retornos, corroborando as estatísticas encontradas na tabela 1.

A figura 2 é mais interessante para se apreciar a normalidade destes retornos. Tratam-se de gráficos quantil-quantil feitos entre a amostra completa dos retornos e uma distribuição normal de referência. Para todas as séries é observado um desvio da normalidade nas caudas, configurando distribuições leptocúrticas em todos os casos.


Retornos dos índices do estudo. Período completo entre 02/01/2009 a 08/05/2018.

Figura 1: Retornos dos índices do estudo. Período completo entre 02/01/2009 a 08/05/2018.


Análise de normalidade dos retornos através de gráficos quantil-quantil.

Figura 2: Análise de normalidade dos retornos através de gráficos quantil-quantil.

Filtro GARCH

Voltando-se para o período dentro da amostra, o filtro proposto GARCH(1,1) foi aplicado a estas séries e seus coeficientes estimados. A função do modelo GARCH neste primeiro estágio é a filtragem da série de perdas, de modo que os resíduos padronizados resultantes não sejam autocorrelacionados e tampouco possuam heterocedasticidade.

Para trabalhar com o VaR em seus quantis altos e portanto, modelar a cauda direita da distribuição, passa-se a trabalhar com a distribuição das perdas dos ativos. A tabela 2 apresenta novamente as estatísticas Jarque-Bera e Ljung-Box (Q e \(Q^2\)) desta vez para os resíduos padronizados resultantes da filtragem das perdas no primeiro estágio do modelo GARCH-POT. Enquanto que os resíduos padronizados, assim como os retornos, não são normais como já se esperava, as estatísticas de autocorrelação agora estão todas em favor da ausência desta. Para todos os índices analisados, não é possível rejeitar \(H_0\) nos testes de autocorrelação, tanto para os resíduos (\(Q(10)\)) como para os seus quadrados (\(Q^2(10)\)) em evidente contraste com os valores apresentados na tabela 1 quando foram analisados os retornos destes índices. Evidência que a filtragem inicial foi bem sucedida em remover autocorrelação serial tanto nas perdas quanto na variância destas.

Tabela 2: Estatísticas de diagnóstico para o modelo GARCH. Valores p entre parênteses. (Período dentro da amostra entre 02/01/2009 a 31/12/2013).
Estatística IBOV ICON IFNC IGCX INDX IMAT
Curtose exc. 1.04702 0.80399 1.07619 1.06174 0.94823 0.85436
Jarque-Bera 59.68837 35.65255 60.39086 65.08960 49.34559 38.82424
(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)
Q(10) 2.22678 4.56100 2.93792 2.56408 2.64320 2.44096
(0.91608) (0.57468) (0.82868) (0.87790) (0.86803) (0.89259)
\(Q^2(10)\) 8.48918 3.04788 3.72839 6.32895 5.37480 5.52198
(0.13786) (0.81307) (0.70876) (0.32562) (0.45069) (0.42978)

Sendo assim, com retornos padronizados que não são normalmente distribuídos e possuem cauda longas com excesso de curtose, mas que após filtragem não apresentam mais autocorrelação ou heterocedasticidade, pode-se passar ao segundo estágio do modelo, ou seja, aplicar a teoria do valor extremo através do método peaks over treshold para parametrizar a cauda direita das distribuições de perdas dos ativos.

Método POT

Os resíduos padronizados são tratados como as realizações do processo de inovação no modelo GARCH. Estas inovações serão analisadas sob a ótica da EVT para a obtenção dos parâmetros da GPD que definem a cauda direita de sua distribuição.

Para tanto, deve ser estabelecido um limiar u adequado para cada uma das séries, de modo que seja satisfeito o teorema de Pickands-Balkema-de Haan. Este valor de limiar será diferente para cada série e sua escolha deve seguir os princípios delineados no artigo Medidas de Risco com a Teoria do Valor Extremo através da função média dos excessos. Entretanto, considerando o trade-off existente entre o viés e a variância dos parâmetros da GPD estimados com relação a escolha do valor deste limiar, pode-se abordar o problema desta escolha de outra forma.

Neste artigo foi utilizado o quantil empírico a 90% para a escolha do valor do limiar. Conforme visto anteriormente, um valor de limiar que resulte em um número de excessos observados (\(N_u\)) entre 100 e 130 é o mais indicado. Considerando o tamanho da janela de dados dentro da amostra para os índices sob análise, este quantil resulta em número de excessos nesta quantidade.

A escolha do limiar através de um quantil empírico fixo também é mais adequada considerando-se que para a fase de backtest do modelo é necessário reavaliar o valor deste limiar para cada dia dentro do período fora da amostra, o que se tornaria inviável de ser feito através da análise gráfica da função média dos excessos.

Escolhido o limiar u, trata-se de obter a série de inovações em excesso ao limiar \(Z^u_t:\{Z^u_t = Z_t-u |Z_t > u\}\), onde \(Z_t\) são as inovações, em que os resíduos padronizados encontrados são suas realizações e \(Z^u_t\) são portanto, as inovações em excesso.

A esta série de inovações em excesso é aplicada a função log-verossimilhança dada na equação (1) que por sua vez é maximizada em relação aos parâmetros \(\xi\) e \(\psi\) para a obtenção de suas estimativas.

\[\begin{align}
\ln L(\xi, \psi; Z^u_j)=&\sum\limits_{j=1}^{N_u}\ln g_{\xi, \psi}(Z^u_j)\nonumber\\
=&-N_u \ln \psi-\left(1+\frac{1}{\xi}\right)\sum\limits_{j=1}^{N_u}\ln \left(1+\xi\frac{Z^u_j}{\psi}\right)
\tag{1}
\end{align}\]

A tabela 3 apresenta os valores destes parâmetros e seus erros padrão para cada um dos índices, com a estimação feita com os dados do período dentro da amostra. Também são apresentados o número de observações dentro da amostra para o total dos resíduos padronizados, assim como o número de excessos observados (\(N_u\)) para o limiar escolhido (\(u\)). Observa-se como o número de excessos varia de acordo com o índice (asim como o total de observações), porém todos ficam em torno de 120 excessos, que é considerado um valor ideal.

Tabela 3: Parâmetros estimados para o modelo EVT dos resíduos padronizados. Período dentro da amostra.
IBOV ICON IFNC IGCX INDX IMAT
N.obs. 1236 1236 1236 1236 1236 1236
Limiar \(u\) 1.27441 1.21387 1.24376 1.28281 1.27872 1.24701
Num.exc. \(N_u\) 124 124 124 124 124 124
Par. forma \(\xi\) -0.00769 -0.06855 -0.08808 0.02810 0.06821 -0.01423
Erro padrão 0.08675 0.09660 0.06545 0.10628 0.10726 0.09281
Par. escala \(\psi\) 0.57865 0.65301 0.64641 0.56854 0.51291 0.54368
Erro padrão 0.07225 0.08603 0.07164 0.07910 0.07168 0.07021
Quantil \(z_{0.975}\) 2.07417 2.07937 2.08917 2.08844 2.02629 1.99505
Quantil \(z_{0.990}\) 2.59690 2.60662 2.59265 2.63717 2.55947 2.48030

Na figura 3 é possível visualizar os gráficos de ajuste das inovações em excesso de cada um dos índices contra suas distribuições GPD de referência, ou seja, aquelas com os parâmetros de forma e escala estimados para os respectivos índices. Verifica-se que a distribuição destes excessos pouco se desvia com relação a curva de referência, denotando um bom ajuste dos dados ao modelo teórico. Em contraste, quando modelados diretamente através de uma distribuição normal, as séries de retornos se afastavam consideravelmente de suas referências como já apresentado na figura 2. Ao se utilizar um método semi-paramétrico como o proposto, modelando apenas uma parte da cauda da distribuição, a parte que interessa para a modelagem de risco, obtém-se uma estimação muito mais próxima da realidade que os dados apresentam.


Qualidade do ajuste dos dados de inovações em excesso contra uma GPD de referência. Período dentro da amostra.

Figura 3: Qualidade do ajuste dos dados de inovações em excesso contra uma GPD de referência. Período dentro da amostra.

Avaliação dos modelos

A avaliação dos modelos aqui referidos concentra-se em testar através de backtest o modelo EVT condicional apresentado, o qual utiliza a metodologia em dois estágios proposta por McNeil and Frey (2000) assim como o modelo proposto por RiskMetrics (1995), sendo, portanto, dois modelos testados e comparados para fins de estimação da medida de risco.

O modelo EVT incondicional aqui proposto é diferente daquele encontrado nas outras referências. A filtragem através de um modelo GARCH é realizada e os resíduos padrão resultantes são utilizados para estimar o quantil desejado através da EVT, entretanto, ao se calcular a medida de risco são utilizados a média e o desvio padrão incondicionais do filtro, resultando em menor volatilidade do VaR. Uma vantagem teórica deste método é que se está aplicando a teoria de valor extremo a uma série iid, os resíduos padronizados, conforme preconizado pela teoria. Outra vantagem de cunho mais prático é que esta abordagem se torna um modelo que não possui a alta volatilidade dos modelos condicionais e apresenta de forma mais branda que os modelos incondicionais (às vezes chamados de estáticos) os agrupamentos nas violações ao VaR.

Para fazer o backtest, considere a série \(x_1, x_2, \ldots, x_m\), com \(m\gg n\) e o conjunto de dias \(T = \{n, \ldots, m-1\}\). Uma janela de dados de tamanho fixo contendo as últimas \(n\) observações é utilizada e para cada dia \(t \in T\) é reestimado o valor de \(VaR^t_\alpha\). O período de teste fora da amostra vai de 01/01/2015 a 08/05/2018, com dados diários para as perdas dos índices sob análise. O número de observações (\(n\)) dentro da janela de dados utilizada para fazer a estimação dos modelos para cada um dos índices é aquele apresentado na tabela 3 (N.obs.), esse valor é fixo para cada série. Portanto, a partir do início do período de teste, esta janela de tamanho fixo avança um dia e o modelo é reestimado, resultando no valor estimado de \(VaR_\alpha^t\), ou seja, a medida de risco calculada ao final do dia \(t\) que deverá ser comparada a perda incorrida no dia a frente, \(t+1\).

O quantil para a definição do limiar u é fixo em 0,90, o que resultará em valores distintos de limiar para cada rodada do teste, e possivelmente um número diferente de excessos observados. Entretanto essas diferenças, considerando o tamanho fixo da janela de dados, será muito pequeno em torno de uma unidade apenas. Mantém-se assim, um número de excessos em torno de 120 observações, valor adequado para se fazer as estimativas dos parâmetros da GPD.

A figura 4 apresenta o resultado do backtest para o modelo EVT condicional para cada um dos índices analisados. É possível verificar como a medida condicional de risco oscila de valor, acompanhando a volatilidade do índice, sendo especialmente responsiva a grandes choques. Em comparação com o modelo Riskmetrics, o EVT apresenta maior persistência em seu nível medido de risco após um choque de volatilidade, ou em outras palavras, uma menor taxa de decaimento. Através da figura 5 pode-se verificar esta condição para o índice IBovespa onde, após a grande perda ocorrida em 18 de maio de 2017, fica evidente que o modelo retorna aos seus níveis de risco anteriores de forma mais lenta que a medida Riskmetrics. Entende-se por modelos incondicionais aqueles em que a volatilidade histórica de toda a janela de dados é utilizada para calcular as medias de risco. É nítido como o modelo condicional, que utiliza a previsão para a média e volatilidade das perdas e então utiliza-os para obter a medida de risco, é muito mais responsivo a alterações no regime de volatilidade do ativo. Um modelo incondicional, por sua vez, não responde de forma acentuada a variações de curto-prazo na volatilidade do ativo, pois estas observações mais extremas são atenuadas em meio a todas as outras observações utilizadas da janela de dados.


\(VaR_{99\%}\) no modelo EVT condicional para todos os índices. Violações demarcadas.

Figura 4: \(VaR_{99\%}\) no modelo EVT condicional para todos os índices. Violações demarcadas.


Teste fora da amostra para o IBOV. O modelo EVT condicional (linha sólida) possui menor taxa de decaimento após um choque de volatilidde que o modelo Riskmetrics (linha tracejada).

Figura 5: Teste fora da amostra para o IBOV. O modelo EVT condicional (linha sólida) possui menor taxa de decaimento após um choque de volatilidde que o modelo Riskmetrics (linha tracejada).

Uma violação é dita ocorrida quando a perda observada é maior que a medida de risco estimada no dia anterior, \(x_{t+1}>VaR^t_\alpha\) para um \(\alpha\) dentro do conjunto de níveis de significância, neste artigo \(\alpha \in \{0,975; 0,990\}\). A tabela 4 apresenta em termos percentuais as violações ocorridas para cada um dos modelos para os níveis de cobertura dados. Dentre os dois modelos analisados, o EVT condicional se saiu melhor nos dois níveis de cobertura. %Os modelos condicionais apresentaram uma tendência a subestimação do risco, com um número superior de violações ao esperado. Os modelos incondicionais, ao contrário, superestimam o risco e apresentam tendência a um número menor de violações. Dentre os modelos estimados o EVT condicional apresentou as violações percentuais mais próximas ao valor esperado, \(1-\alpha\).

Tabela 4: Percentual de violações. Período fora da amostra.
Modelo IBOV ICON IFNC IGCX INDX IMAT
Cobertura = 1%
EVT Condicional 0.65 1.21 0.74 1.12 0.93 0.93
RiskMetrics 1.02 1.68 1.12 1.30 1.40 1.40
Cobertura = 2.5%
EVT Condicional 2.14 2.61 2.14 2.14 2.42 2.70
RiskMetrics 2.42 2.79 2.14 2.61 3.54 2.61

Testes estatísticos

Pode ser realizado um teste estatístico para verificar se o modelo para \(VaR_\alpha\) foi corretamente especificado levando-se em consideração o seu nível de cobertura, \(1-\alpha\). Este teste foi originalmente proposto por Kupiec (1995) e pretende derivar propriedades estatísticas formais do teste utilizado para verificar a precisão de modelos VaR. Este teste permite inferir se a frequência de violações ao VaR é consistente com o valor esperado destas, o nível de cobertura. Sob a hipótese nula de um modelo corretamente especificado o número de violações segue uma distribuição binomial e o teste toma a forma de razão de verossimilhança com a seguinte estatística:

\[\begin{equation}
LR_{uc}=-2\ln\left(\frac{(1-p)^{N-X}p^X}{(1-\frac{X}{N})^{N-X}(\frac{X}{N})^X}\right)
\tag{2}
\end{equation}\]

onde \(p\) é o nível de cobertura, \(N\) é o número de observações do período fora da amostra e \(X\) neste caso é o número de violações ocorridas.

Este teste não faz nenhum tipo de assunção, e por conseguinte não testa, a hipótese de independência entre as violações, sendo considerado um teste de cobertura incondicional para o VaR.

Um teste condicional é aquele proposto, entre outros, por Christoffersen and Pelletier (2004). A hipótese de independência entre as violações está relacionada a duração entre as observações destas. O tempo que se passa entre uma violação e outra deve ser independente e não formar agrupamentos (clusters). Sob a hipótese nula de um modelo corretamente especificado, a duração não deve possuir memória. Como a única distribuição contínua que não possui memória é a distribuição exponencial, os autores propuseram ajustar os dados a uma distribuição Weibull da qual a exponencial é um caso particular quando o parâmetro \(b=1\) e, portanto, o teste é feito sobre este parâmetro. O teste de duração de Christoffersen é feito sob a forma de razão de verossimilhança, sendo a função densidade de uma Weibull:

\[\begin{equation}
f_W(D; a, b) = \begin{cases}
a^b b D^{b-1}e^{-(aD)^b}, &D \geq 0\\
0,&D<0.
\end{cases}
\tag{3}
\end{equation}\]

onde \(D\) é a duração entre as violações e \(a\) e \(b\) são os parâmetros da distribuição.

Nota-se que este teste é destinado apenas a verificação da hipótese de independência das violações. Em conjunto com o teste de Kupiec, a tabela 5 fornece um panorama completo sobre a adequação das especificações de modelos VaR.

Tabela 5: Testes estatísticos para o VaR. Teste incondicional de Kupiec, LRuc, e teste de independência por duração de Christoffersen e Pelletier, LRdur. Os modelos testados são: EVT condicional (cevt) e Riskmetrics (riskmetrics). Período fora da amostra.
Modelo Estatística IBOV ICON IFNC IGCX INDX IMAT
Cobertura 1%
cevt LRuc 1.50 0.45 0.77 0.14 0.05 0.05
cevt LRdur 3.73 1.45 0.53 0.00 2.36 0.03
riskmetrics LRuc 0.01 4.12** 0.14 0.91 1.52 1.52
riskmetrics LRdur 0.05 0.13 0.09 0.01 3.88** 0.22
Cobertura 2.5%
cevt LRuc 0.59 0.05 0.59 0.59 0.03 0.17
cevt LRdur 0.30 0.02 0.94 0.37 0.83 0.99
riskmetrics LRuc 0.03 0.37 0.59 0.05 4.22** 0.05
riskmetrics LRdur 0.96 0.25 0.00 0.69 0.02 0.53

Inspecionando a tabela 5 verifica-se como o modelo EVT condicional, especialmente para o nível de cobertura a 1% é superior ao seu rival, prevalecendo como o único modelo a não rejeitar a hipótese nula a 95% de confiança para ambos os testes e níveis de cobertura.

Conclusão

Este artigo tratou de estimar e comparar dois modelos de VaR para seis índices de ações em segmentos diferentes da Bovespa. Os modelos EVT condicional e Riskmetrics foram estudados e comparados com base em dois tipos diferentes de testes. Especial ênfase foi dada ao modelo EVT condicional o qual se utiliza da teoria do valor extremo para chegar ao resultado da medida de risco. Dentre os modelos estimados, o EVT condicional apresentou os percentuais de violações mais próximos ao valor esperado.

Nos testes estatísticos de cobertura incondicional e independência, a superioridade do modelo EVT condicional se apresenta de forma mais concreta. Este modelo não apresentou rejeição a hipótese nula da correta especificação, tanto para o teste de Kupiec quanto para o teste de duração de Christoffersen e Pelletier ao nível de confiança de 95%.

Apesar de os modelos condicionais se mostrarem mais adequados a estimação do VaR através dos testes estatísticos apresentados, este tipo de modelo, em virtude de sua grande variabilidade ao longo do tempo no valor estimado da medida de risco, impõe uma barreira de cunho prático a sua implementação. Para alterar o VaR tão drasticamente e em curto período de tempo, a instituição financeira deve ser capaz de rapidamente alterar a alocação de ativos de seu portfólio, o que não é a realidade da grande maioria destas instituições. O mercado pode não possuir a liquidez ou a profundidade necessária para realizar estas operações, isso sem contar os custos envolvidos nas transações.

Além deste trade-off entre superioridade teórica do modelo EVT condicional e sua implementação prática mais complexa, a medida de risco VaR atualmente está sendo utilizada em conjunto com a Expected Shortfall. Esta última pode ser derivada a partir do modelo EVT condicional com facilidade e deve ser abordada em outro trabalho, juntamente com testes específicos para o ES com intuito de averiguação do melhor modelo.

Christoffersen, Peter, and Denis Pelletier. 2004. “Backtesting Value-at-Risk: A Duration-Based Approach.” Journal of Financial Econometrics 2 (1). Oxford University Press: 84–108.

Cont, R. 2001. “Empirical properties of asset returns: stylized facts and statistical issues.” Quantitative Finance 1 (2): 223–36. doi:10.1080/713665670.

Kupiec, Paul H. 1995. “Techniques for Verifying the Accuracy of Risk Measurement Models.” The Journal of Derivatives 3 (2). Institutional Investor Journals: 73–84.

McNeil, Alexander J, and Rüdiger Frey. 2000. “Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach.” Journal of Empirical Finance 7 (3-4): 271–300. doi:10.1016/s0927-5398(00)00012-8.

RiskMetrics. 1995. “Technical Document – 3rd Edition.” J.P Morgan Guaranty Trust Company.

Posted by Rafael F. Bressan in Derivativos & Riscos, 1 comment
Medidas de Risco com a Teoria do Valor Extremo

Medidas de Risco com a Teoria do Valor Extremo

Teoria do valor extremo (EVT da sigla em inglês) é um ramo da estatística que lida diretamente com eventos raros, extremos. Seu objetivo é modelar eventos que se distanciam muito da mediana de uma distribuição. Justamente por esta característica, a EVT está sendo utilizada para modelar riscos que possuem distribuição com caudas longas, um dos fatos estilizados que apresentamos sobre retornos de ativos financeiros.

No primeiro artigo desta sequência foi apresentada uma vasta revisão de literatura sobre a EVT e suas aplicações em finanças, com enfoque especial ao gerenciamento de risco. Neste artigo formalizaremos a teoria e serão apresentadas as equações para o cálculo tanto do VaR quanto do ES para um ativo financeiro. Também será abordada a diferença entre medidas incondicionais e condicionais de risco.

Ao utilizarmos a EVT, e mais especificamente o método conhecido como peaks over treshold – POT, estamos interessados em modelar apenas a parte da cauda da distribuição das perdas de um ativo financeiro maiores que um determinado valor de limiar u. É da modelagem desta cauda, portanto, que faremos as estimativas de risco VaR e ES.

Distribuição de valores extremos generalizada

Consideremos uma amostra de uma variável aleatória cujas observações sejam independentes e igualmente distribuídas (va iid) \(L_i,i\in \mathbb{N}\) que represente as perdas financeiras de um determinado ativo.

A EVT está interessada em investigar o comportamento da distribuição dos máximos desta va iid dados por \(M_n = \max (L_1, \ldots , L_n)\) para vários valores de \(n\) e a medida que \(n\rightarrow \infty\). A sequência \(M_n\) é chamada de máximos em bloco e é possível demonstrar que a única distribuição para a qual \(M_n\) converge com \(n\rightarrow \infty\) é a distribuição de valores extremos generalizada (GEV, da sigla em inglês).

Para tanto, é necessário normalizarmos esta sequência de máximos de forma que sua distribuição seja convergente para uma distribuição \(H(x)\) não-degenerada1. Seja \(F(x)\) a distribuição original de uma variável aleatória iid, é possível normalizar seus máximos em bloco através da relação \(M_n^*=(M_n-d_n)/c_n\) de forma que:

\[\begin{equation}
\lim_{n \rightarrow \infty} P\left(\frac{M_n-d_n}{c_n} \leq x \right)
= \lim_{n \rightarrow \infty} F^n(c_nx + d_n)
= H(x)
\tag{1}
\end{equation}\]

Em outras palavras, para determinadas sequências \(c_n\) e \(d_n\) a serem escolhidas, existe uma distribuição de \(H(x)\) não-degenerada a qual representa a distribuição dos máximos em bloco de \(F(x)\).

A potenciação de \(F\) em \(n\) deriva diretamente da suposição que a variável aleatória é iid, enquanto que a transformação de \(x \rightarrow c_n x+d_n\) é a normalização dos máximos em bloco.

Definição 1 (Domínio de atração de máximos) Se a equação (1) é válida para uma \(H\) não-degenerada, então se diz que \(F \in MDA(H)\), \(F\) pertence ao domínio de atração de máximos de \(H\).
Teorema 1 (Fisher-Tippett) Se \(F \in MDA(H)\) para alguma \(H\) não-degenerada, então \(H\) deve ser uma distribuição do tipo de valores extremos generalizada – GEV.

O teorema 1 foi estabelecido através de três artigos, Fisher and Tippett (1928), Gnedenko (1941) e Gnedenko (1943).

Definição 2 (Distribuição de valores extremos generalizada) É definida por sua p.d.f (função densidade de probabilidades) a qual é dada por:

\[\begin{equation}
H_\xi(x) =
\begin{cases}
exp(-(1+\xi x)^{-\frac{1}{\xi}}), & \xi \neq 0,\\
exp(-e^{-x}), & \xi = 0,\\
\end{cases}
\tag{2}
\end{equation}\]

O parâmetro \(\xi\) (leia-se qsi) é conhecido como o parâmetro de forma da distribuição e dependendo deste valor teremos diferentes tipos de distribuição (casos particulares da GEV). Quando \(\xi=0\) a distribuição resultante é uma Gumbel, quando \(\xi>0\) uma Fréchet surge, e por fim quando \(\xi<0\) temos uma Weibull.

Tomemos como exemplo a distribuição exponencial e calcularemos seu MDA e verificaremos se este está entre umas das distribuições GEV. Uma distribuição exponencial é caracterizada pela seguinte função de distribuição (c.d.f):

\[\begin{equation*}
F(x)=1-e^{- \beta x}, \beta > 0 \text{ e } x \geq 0
\end{equation*}\]

Se escolhermos as sequências \(c_n=1/\beta\) e \(d_n=\ln n /\beta\) podemos substituir diretamente na equação e calcular \(H(x)\).

\[\begin{equation*}
F^n \left(c_nx+d_n \right)=\left(1-\frac{1}{n}e^{-x} \right)^n
\end{equation*}\]

\[\begin{equation*}
\lim_{n \rightarrow \infty} \left(1-\frac{1}{n}e^{-x} \right)^n = H(x)
\end{equation*}\]

Fazendo uma simples substituição de variáveis, \(i=-e^{-x}\), então:

\[\begin{equation*}
H(x)=\lim_{n \rightarrow \infty}\left(1+\frac{i}{n} \right)^n
\end{equation*}\]

Que é o limite fundamental \(e^i\), o qual substituindo novamente \(i\) temos:

\[\begin{equation*}
H(x)=exp\left(-e^{-x}\right)=H_0(x), \text{Distribuição Gumbel}
\end{equation*}\]

Ou seja, a distribuição exponencial pertence ao \(MDA\) da distribuição Gumbel, a qual por sua vez é um dos casos particulares da GEV quando \(\xi=0\).

Via de regra não necessitamos calcular a qual \(MDA\) pertencem nossas distribuições, bastando saber que basicamente todas as distribuições contínuas de utilidade prática estão contidas em \(MDA(H_\xi)\) para algum valor de \(\xi\).

Excessos acima de um limiar

O método conhecido como POT, para calcular a função de distribuição dos valores que excedem um determinado limiar de um conjunto de dados vem sendo empregado no mundo financeiro para ajustar as caudas das distribuições de retornos, ou perdas, dos ativos. Este método é preferido a teoria clássica de valores extremos (e.g. máximos em bloco), pois, desperdiça uma quantidade menor de dados da série original. Qualquer valor que exceda o limiar pré-determinado é considerado na distribuição dos excessos. Esta distribuição dos valores da série que estão acima de um determinado limiar u é definida como:

Definição 3 (Distribuição dos excessos) Seja X uma variável aleatória com função de distribuição c.d.f F. A distribuição dos excessos sobre um limiar u tem a seguinte função de distribuição:

\[\begin{equation}
F_u(x)=P(X-u \leq x | X > u)=\frac{F(x+u)-F(u)}{1-F(u)}
\tag{3}
\end{equation}\]

para \(0 \leq x < x_F-u\), onde \(x_F \leq \infty\) é o limite direito da distribuição F.

Ou seja, a função distribuição dos excessos sobre um limiar u é a probabilidade condicional que um valor X retirado dos dados subtraído de u (o excesso) seja menor que um dado quantil x, sabendo-se que X é maior que u. Uma importante distribuição que surge na modelagem dos excessos sobre um limiar é a distribuição de pareto gereralizada – GPD, que segue.

Definição 4 (Distribuição de Pareto Generalizada) É definida por sua função de distribuição:

\[\begin{equation}
G_{\xi,\beta(u)}(X) =
\begin{cases}
1- \left(1+ \frac{\xi x}{\beta(u)} \right)^{-\frac{1}{\xi}}, & \xi \neq 0,\\
1-exp\left(-\frac{x}{\beta(u)}\right), & \xi = 0,\\
\end{cases}
\tag{4}
\end{equation}\]

onde \(\beta > 0\), e \(x\geq 0\) quando \(\xi \geq 0\) ou \(0 \leq x \leq -\beta / \xi\) quando \(\xi < 0\).

Os parâmetros \(\xi\) e \(\beta\) são conhecidos respectivamente como parâmetros de forma e escala da distribuição. Na figura 1 abaixo, são mostradas três parametrizações para a função de distribuição acumulada (c.d.f) e para a densidade de probabilidades (p.d.f) de GPD com parâmetro \(\xi\) iguais a -0,5, 0 e 0,5 enquanto que o parâmetro de escala \(\beta\) é mantido constante e igual a 1. Perceba como para \(\xi <0\) a p.d.f tem um limite direito que é dado por \(-\beta / \xi\) a partir do qual os valores de \(g(x)\) são zero.


Três parametrizações para uma GPD. A linha sólida corresponde a \(\xi=0,5\), a linha pontilhada a \(\xi=-0,5\) e a linha tracejada a \(\xi=0\).

Figura 1: Três parametrizações para uma GPD. A linha sólida corresponde a \(\xi=0,5\), a linha pontilhada a \(\xi=-0,5\) e a linha tracejada a \(\xi=0\).

A distribuição de Pareto generalizada tem papel fundamental na teoria de valor extremo em função do teorema de Pickands-Balkema-de Haan (Pickands (1975) e Balkema and Haan (1974)) conforme abaixo:

Teorema 2 (Pickands-Balkema-de Haan) Pode ser encontrada uma função \(\beta(u)\) tal que:
\[\begin{equation*}
\lim\limits_{u \rightarrow x_F} \; \sup\limits_{0\leq x <x_F – u} |F_u(x)-G_{\xi, \beta(u)}(x)| = 0
\end{equation*}\]

se e somente se \(F\in MDA(H_\xi)\) para \(\xi \in \mathbb{R}\).

O que este teorema nos diz é que para distribuições as quais os máximos em bloco normalizados convergem para uma GEV (na forma da equação (2)), então a distribuição dos excessos acima de um limiar destas mesmas distribuições convergem para uma GPD, dado um valor de limiar u adequado. Podemos fazer então a seguinte suposição:

Suposição 1: Seja F a distribuição de perdas com limite direito \(x_F\), assuma que para um valor limiar alto o suficiente u nós temos que \(F_u (x)=G_{\xi,\beta} (x)\), onde \(F_u (x)\) denota a distribuição dos excessos de x em relação ao valor de limiar u, para \(0 \leq x < x_F-u\), \(\xi \in \mathbb{R}\) e \(\beta > 0\).

Esta é uma suposição, uma vez que a distribuição dos excessos não segue exatamente uma GPD, mas apenas tende a esta distribuição dado um limiar u alto e uma amostra de dados grande o suficiente.

Dada a parametrização de uma GPD, é interessante sabermos o valor esperado desta distribuição, uma vez que esta medida de valor central nos fornece importante informação sobre a quantidade de risco que estamos buscando medir, assim como a informação de que a própria distribuição foi ajustada aos dados de forma satisfatória, como será demonstrado adiante.

O valor esperado de uma variável aleatória não negativa pode ser computado através da integral de sua cauda, \(P(X>x) = 1-P(X \leq x)\). A cauda da GPD é, para \(\xi \neq 0\), \(\left(1+\xi x / \beta(u) \right)^{-1/ \xi}\)

Bastando, portanto, integrar em relação a \(x\) sobre o domínio deste, que é de \(0\) a \(\infty\).

\[\begin{equation*}
\displaystyle\int\limits_{0}^{\infty} \left(1+ \xi x /\beta(u) \right)^{-1/\xi} dx
\end{equation*}\]

Desta forma, o valor esperado de uma GPD \(G_{\xi,\beta(u)} (X)\), ou seja, sua média, converge para valores de \(\xi<1\) e é dado pela seguinte equação:

\[\begin{equation}
E\left[G_{\xi,\beta(u)} (X) \right]=\frac{\beta(u)}{1-\xi}
\tag{5}
\end{equation}\]

Definição 5 (Função média dos excessos) A função média dos execessos de uma variável aleatória X com média finita é dada por:

\[\begin{equation}
e(u)=E\left(X-u | X > u\right)
\tag{6}
\end{equation}\]

Ou seja, a equação (6) representa o valor esperado da função de distribuição dos excessos dada pela Definição 3. Ela representa a média de \(F_u\) como uma função do limiar u. Esta função por vezes também é conhecida como função média de vida residual (mean residual life function), sendo encontrada esta denominação em alguns pacotes de software estatísticos.

Para uma variável distribuída na forma de uma GPD, o parâmetro de escala é uma função linear em u dado por \(\beta(u)=\beta + \xi u\), Teorema 3.4.13(e) em Embrechts, Klüppelberg, and Mikosch (1997). Utilizando-se deste fato e da equação (5) chegamos ao cálculo da função média dos excessos para uma GPD, dada por:

\[\begin{equation}
e(u)=\frac{\beta+\xi u}{1-\xi}
\tag{7}
\end{equation}\]

onde \(0 \leq u < \infty\) se \(0 \leq \xi <1\) e \(0 \leq u \leq -\beta / \xi\) se \(\xi < 0\). É possível observar que de fato a função média dos excessos em uma GPD é linear em u. Esta é uma característica importante de uma GPD e que nos auxilia a escolher um valor adequado do limiar u de tal forma que a Suposição feita anteriormente faça sentido.

Assim, quando estamos analisando uma determinada distribuição de perdas F e desejamos ajustar a cauda desta distribuição, ou seja, as perdas acima de um dado valor limiar u a uma GPD \(G_{\xi, \beta}(x)\) precisamos primeiramente determinar um valor adequado de u de modo que a suposição \(F_u(x)\rightarrow G_{\xi, \beta}(x)\) seja válida. Um método frequentemente utilizado é o gráfico da função média dos excessos com relação a u. Analisando este gráfico, escolhemos o menor valor de u para o qual a partir deste ponto a relação \(e(u) \text{ vs } u\) torna-se linear.

Desejamos o menor valor de u para o qual a relação é linear pois, mesmo o método POT implica em grande perda de dados da série temporal, já que apenas os valores acima deste limiar são utilizados para fazer a estimação dos parâmetros \(\xi\) e \(\beta\) da GPD. Portanto, existe um trade-off na escolha do valor limiar u, escolhendo um valor muito baixo termos uma boa quantidade de dados para estimar os parâmetros da GPD, mas a própria distribuição resultante não será GPD, uma vez que não estaremos trabalhando na região onde a relação \(e(u) \text{ vs } u\) é linear. Por outro lado, um valor limiar muito alto nos impõe o custo de trabalhar com poucos dados para fazer a estimação dos parâmetros da distribuição e por conseguinte, os erros padrões dessas estimativas serão elevados.

Lema 1 Sob a Suposição 1 segue que \(F_v (x)=G_{\xi,\beta+\xi(v-u)} (x)\) para qualquer valor limiar \(v \geq u\).

Logo, a distribuição dos excessos sobre limiares mais altos que u, também segue uma GPD com o mesmo parâmetro de forma \(\xi\) e parâmetro de escala que cresce linearmente com este limiar mais alto v. Se \(\xi < 1\), a média desta nova GPD converge e é dada por:

\[\begin{equation}
e(v)=\frac{\beta+\xi(v-u)}{1-\xi}=\frac{\xi v}{1- \xi}+ \frac{\beta-\xi u}{1-\xi}
\tag{8}
\end{equation}\]

Esta é a função média dos excessos sobre limiares mais altos, e está definida para \(u \leq v < \infty\) se \(0 \leq \xi < 1\) e, \(u \leq v \leq u-\beta / \xi\) se \(\xi < 0\).

Esta função é muito útil para calcularmos o \(ES_\alpha\) (expected shortfall), considerando que \(VaR_\alpha\) nada mais é que um quantil superior ao limiar \(u\) escolhido.

Modelando caudas e medidas de risco associadas

Através da modelagem da cauda da distribuição F de perdas por uma GPD, como feito na seção anterior, é possível calcularmos as medidas de riscos \(VaR_\alpha \text{ e } ES_\alpha\) para esta distribuição de perdas em função dos parâmetros da GPD estimada e também fazendo uso da distribuição empírica de F.

Sob a Suposição 1 nós temos que a cauda da distribuição F, \(\bar{F}(x)\), para \(x \geq u\) é dada por:

\[\begin{align}
\bar{F}(x) & = P(X>u)P(X>x|X>u) \nonumber \\
& = \bar{F}(u) P(X-u>x-u|X>u) \nonumber \\
& = \bar{F}(u)\bar{F}_u(x-u) \nonumber \\
& = \bar{F}(u)\left(1+\xi \frac{x-u}{\beta}\right)^{-1/\xi}
\tag{9}
\end{align}\]

Da qual se soubéssemos exatamente a distribuição F teríamos um modelo analítico para as probabilidades de perdas na cauda da distribuição. Aqui \(x\) são os valores a serem observados das perdas, e portanto \(x-u\) são as perdas em excesso ao limiar.

O que fizemos através da equação (9) foi efetivamente separar a distribuição F, ou melhor, sua cauda, em duas partes. A primeira parte, para valores menores que u, não foi modelado analiticamente e portanto utilizamos a distribuição empírica das perdas, aqui representada por sua cauda \(\bar{F}(u)\), que nada mais é que o número observado de excessos de u sobre o número total de observações da amostra.

A segunda parte é justamente a modelagem através de uma GPD com parâmetros \(\xi \text{ e } \beta\) dado o limiar u. Por esta modelagem paramétrica podemos conhecer as probabilidades de cauda para valores de x maiores que u.

O quantil \(\alpha\) é a inversa da função distribuição e nos retorna o valor para o qual um percentual \(\alpha\) de observações da amostra é menor ou igual. Assim sendo, \(VaR_\alpha\) nada mais é que um quantil alto para o qual determinamos que \(\alpha \%\) das perdas devem ser menores ou iguais a este valor.

Como a equação (9) fornece a probabilidade de cauda, então esta é igual a \(1- \alpha\) para um valor de \(\alpha \geq F(u)\). Fazendo \(\bar{F}(x)=1-\alpha\) na equação (9) o valor de x representará \(VaR_\alpha\) e nos basta manipular esta equação até isolarmos \(VaR_\alpha\) como função de \(\bar{F}(u), \alpha \text{ e dos parâmetros da GPD } \xi \text{ e } \beta\). Que nos garante a equação abaixo:

\[\begin{equation}
VaR_\alpha = q_\alpha(F) = u+\frac{\beta}{\xi}\left[ \left( \frac{1-\alpha}{\bar{F}(u)}\right)^{-\xi}-1 \right]
\tag{10}
\end{equation}\]

A medida \(ES_\alpha\) pode ser entendida como a média das perdas que excedem o valor dado por \(VaR_\alpha\). Como o próprio \(VaR_\alpha\) é um quantil acima do valor de limiar u, \(ES_\alpha\) é dado pelo valor do \(VaR_\alpha\) somado a função média dos excessos dada pela equação (8) fazendo \(v = VaR_\alpha\). Esta média é convergente para valores de \(\xi < 1\) conforme já demonstrado. Ou seja, \(ES_\alpha=VaR_\alpha + e(VaR_\alpha)\). A qual nos rende de forma mais geral:

\[\begin{equation}
ES_\alpha = \frac{VaR_\alpha}{1-\xi}+\frac{\beta-\xi u}{1-\xi}
\tag{11}
\end{equation}\]

Portanto, ambas medidas de risco \(VaR_\alpha\) e \(ES_\alpha\), para distribuições de perdas que tiveram suas caudas modeladas através de uma GPD da forma \(G_{\xi, \beta(u)}\) com \(\xi <1 \text{ e } \beta > 0\), podem ser calculadas respectivamente através das equações dadas em (10) e (11). As estimativas destas medidas de risco serão encontradas através das estimativas dos parâmetros da GPD, assim como do limiar utilizado e de uma medida empírica de \(\bar{F}(u)\) que será o número de excessos verificados sobre o total de amostras. É claro que, ao adotarmos esta estimativa para \(\bar{F}(u)\) estamos implicitamente supondo que o número de amostras na série de perdas é significativa, assim como o número de excessos verificados. Daí a importância de se utilizar um valor u adequado, conforme explicitado na seção anterior.

As estimativas de medidas de risco desenvolvidas nesta seção se qualificam como medidas incondicionais, no sentido que elas não dependem do estado atual das coisas, mas sim de todo o histórico de eventos de forma uniforme. Em outras palavras, \(VaR_\alpha \text{ e } ES_\alpha\) derivados a partir das equações (10) e (11) são medidas históricas de risco associado ao ativo em análise e não levam em consideração se nos eventos mais recentes a volatilidade das perdas pode ser diferente do valor histórico.

De fato, uma das características marcantes das perdas (ou retornos, como o leitor preferir) dos ativos financeiros é o chamado clustering de volatilidade, onde grandes volatilidades (retornos positivos ou negativos) têm tendência a ficarem próximas ao longo da linha temporal. Em geral estas aglomerações de volatilidades surgem a partir da autocorrelação destas, ou seja, a volatilidade em um período t é dependente das volatilidades verificadas em períodos anteriores. Um modelo bastante encontrado na literatura que busca modelar estas dependências é o modelo GARCH e suas variantes.

Assim, ao passo que as estimativas de risco desenvolvidas nesta seção são valiosas para prazos mais longos, ainda é necessário desenvolver um modelo que lide com o fato das autocorrelações de volatilidades e portanto, que nossa variável aleatória não é independente e igualmente distribuída ao longo do tempo. O modelo proposto por McNeil and Frey (2000) pode ser utilizado para encontrar as medidas de risco \(VaR_\alpha\) e \(ES_\alpha\) condicionais que desejamos, ainda dentro da metodologia de peaks over treshold.

Medidas condicionais de risco

Ativos financeiros possuem características de autocorrelação, senão em seus retornos propriamente ditos, ao menos em suas volatilidades ou variações absolutas. Ou seja, dada uma grande variação no momento t é de se esperar novamente uma grande variação, não necessariamente na mesma direção daquela anterior, para o momento t+1 e posteriores. Desta forma, medidas de risco incondicionais, conforme aquelas derivadas na seção de medidas de risco podem ser adequadas somente para horizontes temporais mais longos, pois implicitamente tomam em consideração os fatos mais recentes com o mesmo valor de predição que fatos mais longínquos.

Também já foi bastante estudado e mostrado no artigo anterior que modelos que levem em conta riscos condicionais ao incorporarem as autocorrelações nas volatilidades, levam a resultados de testes melhores. Assim, nesta seção trabalharemos com o modelo proposto por McNeil and Frey (2000) os quais fazem uma adequação dos retornos dos ativos a um modelo GARCH e posteriormente tratam os erros desta modelagem como iid e portanto, a metodologia de POT e ajuste de uma GPD pode ser feito. Este modelo pode ser entendido como um modelo condicional para medidas de risco pois, efetivamente, é levado em conta o estado atual da previsão para a média e principalmente para a volatilidade ao se calcular o VaR. Desta forma a medida responde rapidamente às variações nos humores do mercado e pode sinalizar de forma ágil uma inadequação de capital reservado pela instituição financeira.

Além desta vantagem de cunho prático, a técnica possui uma atratividade teórica. O método POT deve ser aplicado a séries iid que sabidamente não é o caso de perdas de ativos financeiros. Ao se utilizar a técnica POT nos resíduos padronizados de um modelo GARCH o que se está realizando é uma pré-filtragem destas perdas, de forma a obter resíduos padronizados que sejam iid e portanto, aplicável a teoria de valor extremo.

Primeiramente vamos estabelecer um modelo GARCH para as perdas do ativo subjacente. Se denotarmos \(L_t\) como sendo a perda observada no período t, \(\mu_t\) e \(\sigma_t\) são respectivamente a média e o desvio padrão condicionais e mensuráveis através do conjunto de informações disponíveis em t-1 e seja \(Z_t\) inovações iid com média zero e desvio padrão unitário, então temos que:

\[\begin{equation}
L_t=\mu_t+\sigma_t Z_t
\tag{12}
\end{equation}\]

Seja \(F_L(l)\) a distribuição marginal de \(L_t\), então \(F_{L_{t+1}} | \mathcal{G}_t(l)\) é a distribuição preditiva da perda para o próximo período, onde \(\mathcal{G}_t\) é o conjunto de informações disponíveis no período t, incluindo-o. Portanto, para o cálculo das medidas condicionais de risco estamos interessados em um quantil \(\alpha\) na cauda de \(F_{L_{t+1} | \mathcal{G}_t}(l)\). Este quantil \(\alpha\), que será o nosso \(VaR_\alpha\), é o ínfimo l tal que o valor da distribuição preditiva seja maior ou igual a \(\alpha\). Ao passo que o valor condicional do ES será o valor esperado das perdas previstas que sejam maiores que VaR para o mesmo intervalo de confiança. Ou seja:

\[\begin{align}
VaR_\alpha^t=&\inf\{l \in \mathbb{R}: F_{L_{t+1} | \mathcal{G}_t}(l) \geq \alpha\}, \\
ES_\alpha^t=&E[L_{t+1} | L_{t+1} > VaR_\alpha^t]
\end{align}\]

Considerando que nossa distribuição de perdas é dada pela equação (12) e sabendo das propriedades de variáveis aleatórias e do operador de expectância, as equações dadas acima subsumem a:

\[\begin{align}
VaR_\alpha^t=&\mu_{t+1}+\sigma_{t+1}z_\alpha, \tag{13} \\
ES_\alpha^t=&\mu_{t+1}+\sigma_{t+1}E[Z | Z>z_\alpha] \tag{14}
\end{align}\]

onde \(z_\alpha\) é o quantil \(\alpha\) das inovações Z.

Agora nos falta escolher um processo que modele nossa série temporal dada em (12), ou seja, precisamos especificar o comportamento de \(\mu_t\) e \(\sigma_t\). Por suposição do modelo, especificamos que o comportamento destas variáveis é dependente de acontecimentos passados, contidos no conjunto de informações \(\mathcal{G}_{t-1}\) . Dentre os diversos modelos já propostos para estimar médias e volatilidades condicionais, está o simples porém efetivo modelo GARCH(1,1) para a volatilidade condicional e o modelo AR(1) para a média condicional. Uma extensão destes modelos básicos para outros mais complexos pode ser facilmente obtida e é vasta na literatura, como exemplo modelos GARCH-M, Treshold GARCH, EGARCH, etc. para volatilidades condicionais e um modelo do tipo ARMA para a média.

Como critérios para a escolha deste modelo de filtro no primeiro estágio, deseja-se que as inovações \(Z_t\), através de suas realizações na forma dos resíduos padronizados estimados no modelo possuam 2 características, ausência de autocorrelação serial em seus valores e nos seus quadrados.

Neste artigo, visando aplicar a teoria do valor extremo para o cálculo das medidas condicionais de risco, não faremos maiores assunções acerca da distribuição das inovações, como por exemplo assumir uma determinada distribuição (e.g. Normal ou t de Student), mas está implícito que esta pertence ao MDA de uma GEV e portanto a distribuição de seus excessos sobre um limiar segue aproximadamente uma GPD.

Dadas estas considerações, o modelo adotado segue um formato em dois estágios para ser implementado, como segue.

Referências

Balkema, A A, and L de Haan. 1974. “Residual Life Time at Great Age.” The Annals of Probability 2 (5): 792–804. doi:10.1214/aop/1176996548.

Embrechts, P, C Klüppelberg, and T Mikosch. 1997. Modelling Extremal Events for Insurance and Finance. Springer.

Fisher, R A, and L H C Tippett. 1928. “Limiting forms of the frequency distribution of the largest or smallest member of a sample.” Proceedings of the Cambridge Philosophical Society 24: 180–90.

Gnedenko, B V. 1941. “Limit theorems for the maximal term of a variational series.” Comptes Rendus (Doklady) de L’Académie Des Sciences de L’URSS 32: 7–9.

———. 1943. “Sur la distribution limite du terme maximum d’une série aléatoire.” Annals of Mathematics 44: 423–53.

McNeil, Alexander J, and Rüdiger Frey. 2000. “Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach.” Journal of Empirical Finance 7 (3-4): 271–300. doi:10.1016/s0927-5398(00)00012-8.

Pickands, James. 1975. “Statistical Inference Using Extreme Order Statistics.” Annals of Statistics 3: 119–31. doi:10.1214/aos/1176343003.


  1. Distribuição degenerada é aquela cuja densidade de probabilidade está totalmente concentrada em apenas um ponto de seu domínio.
Posted by Rafael F. Bressan in Derivativos & Riscos, 2 comments
Risco de mercado, princípios de Basileia e a teoria do valor extremo

Risco de mercado, princípios de Basileia e a teoria do valor extremo

Neste artigo iniciaremos uma discussão sobre a utilização da teoria do valor extremo – EVT para o cálculo de risco de mercado de ativos financeiros. Desta forma, a EVT pode ser utilizada tanto para o cálculo de VaR quanto ES, recaindo sobre a categoria de modelo semi-paramétrico.

Este será o primeiro artigo de uma série de três. Nesta introdução a EVT, faremos uma vasta revisão da literatura aplicada a finanças. O segundo artigo apresentará ao leitor já familiarizado a modelagem matemática das medias de risco utilizando a EVT e por fim, o último artigo apresentará um estudo de caso, comparando diversos modelos para o cálculo do VaR e inferindo qual modelo é mais adequado com base em critérios bem definidos na literatura. Os artigos foram adaptados de um trabalho de iniciação científica do autor e, portanto, apresentam um caráter mais acadêmico que o normalmente encontrado nos artigos do Clube de Finanças. Ainda assim, o assunto é relevante e atual dentro do gerenciamento de risco das instituições financeiras e desta forma acreditamos que nossos leitores se beneficiarão desta série.

Introdução

A medição do risco de mercado ao qual os portfólios dos investidores está sujeito é objeto de devoção de esforços tanto por parte das instituições e investidores em geral como por parte dos reguladores. Instituições financeiras – IF em todo o mundo, de acordo com suas regulações locais e com os princípios de Basileia ( Basel Comittee on Banking Supervision – BCBS do Banco de Compensações Internacionais – BIS) são obrigadas a reservar uma parcela de seu capital como provisionamento contra flutuações adversas do mercado, como forma de mitigar seu risco de insolvência.

Estas instituições devem manter seu risco de insolvência controlado, e a percepção externa deve ser tal que não haja desconfiança do público com sua habilidade em controlar este risco. Se a confiança na instituição se esvai e a percepção de risco é elevada, rapidamente uma crise de liquidez pode surgir, com depositantes sacando seus recursos ao mesmo tempo em que outras fontes de funding também se tornam escassas. Em tal situação, é natural o banco ou IF, ir ao mercado para vender seus ativos e levantar os recursos necessários. Neste momento uma crise de liquidez no mercado pode levar a uma possível insolvência da IF pois, não há garantias que no mercado aberto, os ativos do banco serão justamente avaliados e arrematados.

Uma importante característica das séries de retornos financeiros é sua alta volatilidade, não constante e tampouco seguindo uma distribuição Normal. Assim, eventos extremos, e neste caso estamos interessados em perdas de grande magnitude, acontecem com uma frequência alta demais para serem descartadas como apenas outliers, e portanto passaram a atrair a atenção dos participantes do mercado, entre eles os investidores e reguladores. Estas observações induziram uma gama de estudos, empíricos e teóricos, voltados a explicar o comportamento dos retornos de séries financeiras e modelar de forma adequada as caudas da distribuição destes retornos. Não somente estes estudos são de grande relevância para o gerenciamento de risco nas instituições financeiras, como também são obrigatórios segundo o acordo de Basileia, uma vez que este requer o cálculo do Valor em Risco – VaR, para então a instituição poder projetar o seu nível requerido de capital.

De acordo com os princípios de Basileia III, BCBS (2011), BCBS (2013a), BCBS (2014), as instituições financeiras supervisionadas pelos Bancos Centrais devem manter buffers de capital contra riscos de mercado, crédito, liquidez, entre outros. Dentro dos riscos de mercado, as duas formas mais usuais de fazer a quantificação destes são os métodos de Valor em Risco – VaR e o Expected Shortfall – ES. Este último relacionado ao primeiro, sendo definido como o valor esperado das perdas que excedem o VaR calculado para um determinado nível de confiança.

VaR é um quantil alto \(\alpha\) da distribuição de perdas de um ativo ou portfólio em um determinado período de tempo, ao passo que ES é o valor esperado das perdas que excedem VaR, para um mesmo período e nível de confiança \(\alpha\).

O método VaR para cálculo de risco de mercado ao qual um portfólio está sujeito foi primeiramente introduzido através de RiskMetrics (1995), uma metodologia adotada pelo banco J. P. Morgan. Vem desde então sendo amplamente adotado pela indústria financeira e largamente estudado pela academia. Inúmeras variantes do modelo foram propostas e continuam sendo utilizadas com o passar dos anos. Para o cálculo do VaR é necessária uma suposição acerca da distribuição dos retornos, e por conseguinte do comportamento da cauda desta.

As variações na metodologia original de estimação do VaR surgem principalmente em função de críticas a abordagem proposta, a qual inclui a suposição de retornos independentes e igualmente distribuídos, covariâncias constantes entre os ativos de um portfólio e a distribuição normal dos retornos.

Por meio de dois artigos Artzner et al. (1997) e Artzner et al. (1999), foi introduzido na literatura o conceito de medida coerente de risco. Para uma medida ser considerada coerente, primeiramente foram introduzidas quatro propriedades cunhadas através de axiomas, as quais estas medidas deveriam possuir, invariância translacional, sub-aditividade, homogeneidade positiva, e monotonicidade.

VaR especificamente não possui a propriedade da sub-aditividade para alguns casos, sendo esta uma das grandes críticas ao VaR. Desta forma, em casos específicos, é possível uma carteira diversificada em que sejam computados o VaR de cada um de seus ativos, ser agregada e possuir um VaR do portfólio maior que o maior VaR de seus componentes, algo que não condiz com uma medida coerente de risco. Para contornar este fato, Acerbi and Tasche (2002) propuseram o Expected Shortfall e comprovam que este é uma medida coerente de risco. Além de ser coerente, o ES possui uma segunda vantagem com relação ao VaR, considerando que o ES nos informa uma medida de tendência central do tamanho das perdas que excedem o valor do quantil VaR. Ou seja, o VaR nos informa apenas que uma proporção \(\alpha\) das perdas serão menores que a medida, mas nada nos informa se esta perda extraordinária de fato ocorrer. Mesmo sendo criticado como uma medida não coerente de risco, o VaR continua a ser amplamente utilizado, mesmo que agora em conjunto com o ES.

Mais recentemente o Comitê de Supervisão Bancária de Basileia tem se proposto a adotar o Expected Shortfall como medida de risco de mercado. BCBS (2013b). O Comitê cita a grande importância da escolha da medida de risco e sua calibração, e portanto estas são relevantes para as decisões de política do Banco. Entre as dificuldades encontradas pelo VaR estão mais notadamente sua inabilidade em estimar o “risco de cauda” da distribuição de perdas, uma vez que VaR não leva em conta a distribuição das perdas acima do valor de corte.

Desta forma, foi decidido que o ES seria a medida de risco favorita para a abordagem pelo banco chamada de modelos internos. Ou seja, os bancos supervisionados devem utilizar o ES para o cálculo do risco de mercado a que estão sujeitos em seus modelos internos. O comitê também se decidiu por um nível de confiança de 97,5% para o ES, em contraposição a 99% para o VaR. O comitê espera que esta abordagem para o cálculo da medida de risco de mercado trará benefícios se comparada a antiga abordagem pelo Var, entre elas um modelo com resultados mais estáveis e menor sensibilidade a observações extremas (outliers).

Revisão de Literatura

Teoria do valor extremo, é um ramo da estatística que lida diretamente com eventos raros, extremos. Seu objetivo é modelar o comportamento assintótico de eventos que se distanciam muito da mediana de uma distribuição. Justamente por esta característica, a EVT está sendo utilizada para modelar riscos que possuem distribuição com caudas longas, um dos fatos estilizados bem conhecidos sobre retornos de ativos financeiros.

Ao utilizar a EVT, e mais especificamente o método conhecido como peaks over treshold – POT, se está interessado em modelar apenas a parte da cauda da distribuição das perdas de um ativo financeiro maiores que um determinado valor de limiar u. É da modelagem desta cauda, portanto, que se calcula a estimativa de VaR.

A teoria do valor extremo vem sendo utilizada nas finanças a algum tempo. Devido as características das séries financeiras, por exemplo a leptocurtose, a distribuição normal para os retornos vem sendo rechaçada, enquanto outras distribuições mais adequadas assumem o posto para descrever o comportamento das perdas e retornos de séries financeiras. A EVT, ao modelar distribuições com caudas longas, pode ser utilizada para esta finalidade. A introdução da EVT em dois estágios para a estimação de medidas condicionais de risco pode ser atribuída a McNeil and Frey (2000). Neste artigo os autores propuseram um modelo para a estimação do VaR e ES de forma condicional, tanto para período de um dia como para dez dias a frente, de acordo com o normativo de Basileia vigente a época. Seu modelo, que leva em conta as longas caudas e a natureza estocástica da volatilidade, se ajustam de forma mais fidedigna aos dados. Daníelsson and Morimoto (2000) fizeram uma crítica aos modelos condicionais de cálculo do VaR para o mercado japonês e chegaram a conclusão que um modelo EVT incondicional, inclusive sem o estágio de filtragem inicial, era mais adequado para fins práticos.

Byström (2004) encontrou que ambas abordagens da EVT, máximos em bloco como POT, combinadas com análise de séries temporais tradicional (ARIMA e GARCH), no que se configura uma abordagem condicional para a estimação do VaR, têm os melhores resultados tanto em períodos ditos tranquilos como em épocas de alta volatilidade. Voltando a aplicação da EVT para mercados emergentes, Gencay and Selcuk (2004) utilizaram a teoria de valor extremo para o cálculo de VaR e teste de estresse. Seus resultados apontam que a EVT se torna melhor a medida que o quantil utilizado para o cálculo se eleva. Além disso, encontraram que as caudas da distribuição de retornos se comportam de maneira diferente entre ganhos e perdas. Uma comparação entre diversos modelos de previsão de VaR foi realizada por Kuester, Mittnik, and Paolella (2006). Encontraram que a grande maioria dos modelos subestima o risco, mesmo sendo aceitáveis do ponto de vista regulatório, sendo que o modelo condicional GARCH-EVT está entre as melhores estimações.

Karmakar and Shukla (2014) retomam o modelo em dois estágios e fizeram uma comparação entre o modelo EVT condicional e outros modelos já consagrados no cálculo de VaR em 3 mercados desenvolvidos (EUA, Reino Unido e Japão) e 3 mercados emergentes asiáticos (Índia, Hong Kong e Corea do Sul). O modelo GARCH adotado no primeiro estágio é diferente para cada mercado, porém com uma particularidade comum, todos são modelos assimétricos. Novamente encontram que o modelo EVT condicional é superior aos demais através de testes de cobertura incondicional e condicional.

Chavez-Demoulin, Davison, and McNeil (2005) e Herrera and Schipp (2013) tomam um caminho diferente para modelar a EVT. Enquanto o primeiro adota o método de processos pontuais de auto-excitação1, que dadas algumas condições, converge para o método POT, o segundo modela explicitamente as durações de tempo entre as observações de extremos, ou seja, as perdas em excesso ao limiar escolhido. A magnitude destas perdas continua a ser modelada através da distribuição generalizada de Pareto – GPD. Seu modelo é então chamado de autoregressive conditional duration peaks over threshold model – ACD-POT.

Rocco (2014) fez uma grande revisão sobre o uso da EVT em finanças. As principais aplicações encontradas foram o teste de suposições para diferentes distribuições dos dados, cálculo de medidas de risco como o VaR e ES, alocação de ativos sob restrições e otimização de portfólios, e no estudo de contágio e dependência entre mercados sob condições de alto estresse.

Mais recentemente a EVT encontrou outras formas de aplicação e cálculo. Chavez-Demoulin, Embrechts, and Hofert (2016) sugeriram um modelo onde a frequência e a severidade das perdas podem ser modeladas através da EVT com covariantes. Karmakar and Paul (2016) por sua vez, fizeram uma aplicação do modelo EVT condicional a retornos intra-diários de dezesseis mercados diferentes.

O cálculo de VaR em instituições financeiras e bancos comerciais vem sendo implementado e é requerimento do comitê de Basileia. A EVT entra como uma das metodologias utilizadas neste cálculo, Longin (2000) a utilizou e propôs um modelo para agregar o risco de uma posição de mercado, em contraste a modelos univariados apenas. Testes de estresse podem ser realizados através de sua técnica. Utilizando-se de dados reais de seis grandes bancos comerciais americanos, Berkowitz and O’Brien (2002) analisou a precisão de seus modelos VaR. Ele encontrou que os bancos são amplamente conservadores em suas estimativas de VaR, com níveis de cobertura muito acima dos valores nominais. Wong, Cheng, and Wong (2003) promoveu um estudo sobre as implicações da precisão do modelo VaR no gerenciamento do risco de mercado em bancos. Ele adotou os critérios de Basileia para realizar um estudo de backtest e verificou que modelos baseados em previsões de volatilidade através de GARCH não estão de acordo com estes critérios por muitas vezes. Já em um estudo recente, O’Brien and Szerszeń (2017) fez uma avaliação dos modelos de risco de mercado de bancos no pré, durante e pós crise financeira de 2008. Encontrou que tanto no pré quanto no pós crise, os bancos se comportaram de maneira excessivamente conservadora, entretanto, durante a crise financeira as violações ao VaR excederam muito seu valor esperado assim como aconteceram de forma agrupada, um sinal de má especificação nos modelos adotados. O autor comparou estes resultados com um modelo baseado em GARCH e verificou que esta alternativa é muito superior aos atuais modelos.

Conclusão

A avaliação da probabilidade de eventos raros e extremos é uma questão importante no gerenciamento de riscos das carteiras financeiras. A teoria dos valores extremos fornece os fundamentos sólidos necessários para a modelagem estatística de tais eventos e o cálculo de medidas de risco extremo. Não somente a teoria é adequada para este tipo de modelagem, como também é requerido das instituições financeiras que façam suas estimativas de risco de cauda de maneira conservadora mas realista com as atuais condições de mercado. Seja qual for a medida de risco de mercado desejada, VaR ou ES, a EVT através do método POT vem sendo utilizada com excelentes resultados e tem se tornado a prática de mercado.

Em um próximo artigo faremos uso da EVT e outras técnicas de modelagem de VaR para avaliar, através de testes estatísticos, a capacidade preditiva de sete modelos distintos de cálculo da métrica de valor em risco comumente encontrados na literatura, por meio da técnica de backtesting. Os testes aplicados abrangem características importantes do VaR como cobertura incondicional, independência entre violações e superioridade do modelo dada uma função de perda adequada.

Referências

Acerbi, Carlo, and Dirk Tasche. 2002. “On the coherence of expected shortfall.” Journal of Banking & Finance 26 (7). Elsevier: 1487–1503.

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1997. “Thinking Coherently.” RISK 10 (11): 68–71.

———. 1999. “Coherent Measures of Risk.” Mathematical Finance 9 (3): 203–28. doi:10.1111/1467-9965.00068.

BCBS. 2011. “Basel III: A global regulatory framework for more resilient banks and banking systems.” Revised ve. Bank for International Settlements -Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs189.pdf.

———. 2013a. “Basel III: The liquidity coverage ratio and liquidity risk monitoring tools.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs238.pdf.

———. 2013b. “Fundamental review of the trading book: A revised market risk framework.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/publ/bcbs265.pdf.

———. 2014. “Basel III: The net stable funding ratio.” Bank for International Settlements – Basel Committee on Banking Supervision. http://www.bis.org/bcbs/publ/d295.pdf.

Berkowitz, Jeremy, and James O’Brien. 2002. “How Accurate Are Value-at-Risk Models at Commercial Banks?” The Journal of Finance 57 (3). Blackwell Publishers, Inc.: 1093–1111. doi:10.1111/1540-6261.00455.

Byström, Hans NE. 2004. “Managing Extreme Risks in Tranquil and Volatile Markets Using Conditional Extreme Value Theory.” International Review of Financial Analysis 13 (2). Elsevier: 133–52.

Chavez-Demoulin, V, A C Davison, and A J McNeil. 2005. “Estimating value-at-risk: a point process approach.” Quantitative Finance 5 (2): 227–34. doi:10.1080/14697680500039613.

Chavez-Demoulin, Valérie, Paul Embrechts, and Marius Hofert. 2016. “An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates.” Journal of Risk and Insurance 83 (3): 735–76. doi:10.1111/jori.12059.

Daníelsson, Jón, and Yuji Morimoto. 2000. “Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market.” Monetary and Economic Studies 2 (18). Institute for Monetary; Economic Studies, Bank of Japan: 25–48.

Gencay, Ramazan, and Faruk Selcuk. 2004. “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets.” International Journal of Forecasting 20 (2). Elsevier: 287–303.

Hawkes, Alan G. 1971. “Spectra of Some Self-Exciting and Mutually Exciting Point Processes.” Biometrika 58 (1): 83–90. doi:10.2307/2334319.

Herrera, Rodrigo, and Bernhard Schipp. 2013. “Value at risk forecasts by extreme value models in a conditional duration framework.” Journal of Empirical Finance 23: 33–47. doi:10.1016/j.jempfin.2013.05.002.

Karmakar, Madhusudan, and Samit Paul. 2016. “Intraday Risk Management in International Stock Markets: A Conditional Evt Approach.” International Review of Financial Analysis 44. Elsevier: 34–55.

Karmakar, Madhusudan, and Girja K. Shukla. 2014. “Managing Extreme Risk in Some Major Stock Markets: An Extreme Value Approach.” International Review of Economics and Finance. doi:https://doi.org/10.1016/j.iref.2014.09.001.

Kuester, Keith, Stefan Mittnik, and Marc S. Paolella. 2006. “Value-at-Risk Prediction: A Comparison of Alternative Strategies.” Journal of Financial Econometrics 4 (1): 53–89. doi:10.1093/jjfinec/nbj002.

Longin, François M. 2000. “From Value at Risk to Stress Testing: The Extreme Value Approach.” Journal of Banking & Finance 24 (7): 1097–1130. doi:https://doi.org/10.1016/S0378-4266(99)00077-1.

McNeil, Alexander J, and Rüdiger Frey. 2000. “Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach.” Journal of Empirical Finance 7 (3-4): 271–300. doi:10.1016/s0927-5398(00)00012-8.

O’Brien, James, and Paweł J. Szerszeń. 2017. “An Evaluation of Bank Measures for Market Risk Before, During and After the Financial Crisis.” Journal of Banking & Finance 80 (Supplement C): 215–34. doi:https://doi.org/10.1016/j.jbankfin.2017.03.002.

RiskMetrics. 1995. “Technical Document – 3rd Edition.” J.P Morgan Guaranty Trust Company.

Rocco, Marco. 2014. “Extreme Value Theory in Finance: a survey.” Journal of Economic Surveys 28 (1). Wiley Online Library: 82–108. doi:10.1111/j.1467-6419.2012.00744.x.

Wong, Michael Chak Sham, Wai Yan Cheng, and Clement Yuk Pang Wong. 2003. “Market Risk Management of Banks: Implications from the Accuracy of Value-at-Risk Forecasts.” Journal of Forecasting 22 (1). Wiley Online Library: 23–33.


  1. Para maiores detalhes sobre processos pontuais de auto-excitação, Hawkes (1971) é a referência original.
Posted by Rafael F. Bressan in Derivativos & Riscos, 0 comments
Expected Shortfall

Expected Shortfall

Expected Shortfall como substituto ao VaR

No artigo anterior foi apresentada a medida de risco conhecida como Value-At-Risk (VaR), nele foram abordados origem, conceito, técnicas de estimação e suas deficiências.

Para lidar com as deficiências que o VaR apresenta, Artzner et al. (1999) introduziram uma nova medida de risco denominada como Expected Shortfall (ES). Durante o decorrer deste artigo, esta medida de risco será apresentada e contextualizada com o VaR além de explorado o porquê do ES ser uma medida que apresenta melhores propriedades.

Alguns pontos a serem levados em conta sobre problemas no mundo real que podem levar o uso do ES ser superior ao do VaR:

  1. Investidores racionais que maximizam seus portfólios podem ser enganados pelo uso do VaR. É provável que construam posições com fragilidades não intencionais e podem resultar em perdas superiores ao VaR.
  2. O VaR não é confiável sob estresse de mercado, sob flutuações extremas de preços de ativos ou sob estrutura de dependência extrema de ativos. Nesses casos, VaR pode subestimar o risco.

Além dos pontos citados acima o ES é uma alternativa ao VaR por ser mais sensível ao formato da cauda de distribuição das perdas e é considerado uma medida de risco coerente por respeitar os quatro axiomas propostos por Artzner.

No artigo sobre Value-at-Risk são abordadas as quatro propriedades que medidas de risco coerentes devem apresentar, sendo elas: Monotonicidade, Homogeneidade, Invariância por Translações e Subaditividade. O VaR satisfaz as três primeiras, contudo não é sempre que ele satisfaz a Subaditividade.

O conceito de subaditividade diz que a soma de dois elementos irá sempre retornar algo menor ou igual à soma dos valores da função de cada elemento e é satisfeita através da fórmula abaixo:

\[ ES(\alpha_1 + \alpha_2, α) = ES(\alpha_1, α) + ES(\alpha_2, α) \]

Esta fórmula demonstra que o ES incorpora os benefícios da diversificação uma vez que o risco total do portfólio é igual ou menor que a soma dos risco dos componentes.

O que é Expected Shortfall?

O Expected Shortfall (ES) é uma medida de risco que produz benefícios adicionais ao Value At Risk (VaR), podendo ser referida como Conditional Value At Risk (CVaR), Average Value At Risk (AVaR) ou Expected Tail Loss (ETL).

Como definição, o Expected Shortfall se conceitua como uma medida de risco quantitativa e responde a seguinte pergunta: qual é a perda média, sabendo que a perda está acima do VaR? E também: se as coisas ficarem ruins, qual é a perda esperada?

Assim como o VaR, o ES apresenta dois parâmetros de cálculo, o horizonte de tempo (T) e o nível de confiança (\(\alpha\)). Sendo representado pela perda esperada durante o período (T), sabendo que a perda está condicionada a ser maior que o \(\alpha\)-ésimo Percentil da distribuição de perdas.

Como exemplo, supondo que o VaR é de 1 milhão de reais e que o nível de confiança (\(\alpha\)) é de 99, horizonte de tempo (T) é 1 dia. Então, o ES é a quantia média perdida em um período de 1 dia, sabendo que a perda será superior a R$ 1 milhão.

A figura abaixo, exemplificada em Yamai and Yoshiba (2005), ilustra os conceitos do próprio ES e também do VaR:

Figura 1: VaR e Expected Shortfall

Técnicas de estimação

Os valores do ES são derivados do cálculo do próprio VaR, as premissas do VaR como a forma de distribuição dos retornos, a periodicidade dos dados, a volatilidade estocástica, o corte utilizado, todos afetarão o valor do ES.

Pode-se definir o ES com um nível de confiança \(\alpha\) para uma distribuição de perdas \(L\) como a esperança das perdas acima do VAR:

\[ ES (L) = E[L | L\geq Var_\alpha(L)] \]

Essa estimação, assim como o VaR, pode ser feita de forma paramétrica ou não-paramétrica.

Método não-paramétrico

A forma histórica, ou não-paramétrica (por não depender de parâmetros e sim de amostras), é calculada a partir do VaR histórico com \(N\) observações, atribuindo um peso \(1/n\) para cada uma das n observações acima do VaR:

\[ ES_\alpha(L) = (\sum_{i=N-n}^NLi)/(n) \]

Métodos Paramétricos

Para modelos paramétricos, supomos uma distribuição a que irá depender de certos parâmetros que serão estimados. Dessa forma podemos definir o ES em termos contínuos como uma integral no intervalo \([1 – α; 1]\):

\[ ES =\frac{1}{1-\alpha}\int_{\alpha}^{1}(\Phi^{-1}(1-u)\sigma + \mu)du \] \[ ES = \frac{1}{1-\alpha}\int_\alpha^1 VaR_u(L)du \] Alguns dos modelos mais comuns para se estimar o ES pelos métodos paramétricos são a distribuição Normal (Gaussiana) e a distribuição t-Student. Algumas variações um pouco mais sofisticados são as distribuições da família johnson e a distribuição t não-central.

Assumindo uma distribuição Normal, podemos resolver a integral substituindo a função quantil da Normal padrão \(\Phi^{-1}\) ajustada para os parâmetros da distribuição \(L\), conforme derivação feita por Smaga (2016) :

\[ ES_\alpha =\sigma \frac{\varphi(\Phi^{-1}(\alpha))}{1-\alpha}-\mu \]

Com \(\varphi\) sendo a função de densidade de probabilidade e \(\Phi^{-1}\) a função quantil da Normal padrão (\(N \sim (0;1)\)).

Como simplificação podemos assumir que: \[ ES_{\alpha} =ƛσ − μ \]

Onde \(ƛ\):

\[ ƛ(α) = \frac{\varphi(\Phi^{-1}(α))}{1 − α} \]

Qual método utilizar?

Questões podem ser levantadas sobre a efetividade de cada método. A primeira vista o histórico pode parecer uma boa escolha devido à disponibilidade de dados no mercado financeiro e o aparente melhor ajustamento aos fatos reais. Enquanto isso pode ser verdadeiro se comparado com a estimação por meio da Normal, a distribuição t (e suas variações) pode se mostrar útil para o caso de termos poucas observações ou se quisermos intuir sobre a cauda da distribuição utilizando todo o conjunto de observações. Outra possibilidade seria utilizar estimadores de máxima verossimilhança para estimar os parâmetros da distribuição utilizada, garantindo uma estimativa mais conservadora nos métodos paramétricos, assim como descrito em Martin and Zhang (2017).

Assim como no VaR, além desses dois métodos podemos usar a simulação de Monte Carlo para gerar as observações e proceder assim como no método histórico.

O que é o comitê de Basileia e como ele vem tratando as medidas de risco?

O Comitê de Supervisão Bancária de Basileia é uma organização constituída por representantes de autoridades de supervisão bancária que promove a discussão sobre o aperfeiçoamento das práticas de supervisão bancária, buscando melhorar as ferramentas de fiscalização internacionalmente, e visa o fortalecimento da solidez dos sistemas financeiros.

Em 1988, o comitê estabeleceu o acordo de Basileia I que teve como objetivo criar exigências mínimas de capital, a qual devem ser respeitadas por bancos comerciais, para precaução contra o risco de crédito.

O Basileia I determinou três regras principais para que houvesse o funcionamento:

– Índice Mínimo de Capital: Determina que o banco deve deixar, pelo menos, 8% de capital em caixa de seus empréstimos.

– Capital Regulatório: Determina que a instituição deva deixar um mínimo de capital próprio em caixa para mitigar riscos.

– Avaliação de Risco: Obriga a todas instituições a avaliarem os riscos de financiamento e empréstimo.

Mesmo com todas as exigências e regras impostas pelo comitê isso não impediu inúmeras falências de instituições financeiras. Em 2004, o comitê lançou um novo acordo denominado Basileia II que teve como objetivo reforçar as medidas propostas pelo primeiro acordo e também deu mais liberdade aos bancos centrais de cada país.

Os três pilares trazidos com o segundo acordo são os seguintes:

1. Critérios para o cálculo dos requerimentos mínimos de capital (riscos de crédito, mercado e operacional);

2. Princípios de supervisão para a revisão de processos internos de avaliação da adequação de capital, de forma a incentivar a aplicação, pelos próprios supervisionados, de melhores práticas de gerenciamento de riscos por meio do seu monitoramento e mitigação.

3. Incentivo à disciplina de mercado por meio de requerimentos de divulgação ampla de informações relacionadas aos riscos assumidos pelas instituições.

Após a crise dos subprimes, observou-se que o acordo anterior era insuficiente, por consequência, surgiu o acordo de Basileia III que é um conjunto de propostas de reforma da regulamentação bancária. O acordo aumentou a regulamentação sobre o sistema financeiro e elevou os limites exigidos para bancos e instituições financeiras.

As principais inovações provenientes deste terceiro acordo foram o aperfeiçoamento dos fatores para ponderação de ativos pelo risco, introdução dos colchões de capital para conservação e contracíclico e novos requerimentos para de liquidez e alavancagem.

Desvantagens do ES

Back-Testing

Realizar o Back-test de uma métrica significa calcular quão bem a medida calculada funcionaria no passado. Supondo uma métrica de cálculo de VaR diário com um nível de confiança \(\alpha\), o back-test consiste em analisar com qual frequência as perdas excedem o VaR diário, cada dia que excede o valor é chamado de exceção. Se as exceções acontecem em aproximadamente (100-\(\alpha\))% das vezes a metodologia usada é relativamente precisa, se ocorrem em mais do que (100-\(\alpha\))% das vezes o VaR está possivelmente subestimado, enquanto se ocorrerem em menos vezes está superestimado.

Essa checagem é uma das razões pelas quais os reguladores têm sido relutantes em trocar o VaR pelo ES na quantificação de risco de mercado, dado pelo fato de ser um procedimento muito mais difícil de realizar para o ES, o que é explicado pela maioria dos métodos de back-testing para ES necessitarem de informações da distribuição de retornos de cada dia, ou pelo menos da distribuição das caudas além do VaR.

Monte Carlo e erros de estimação

Estimativas de Value-at-Risk e Expected Shortfall são afetadas por erros de estimação, os quais representam a variabilidade natural causada por amostras de tamanho limitado. As Simulações de Monte Carlo, que são tipicamente utilizadas em processos os quais não podem ser previstos facilmente devido à intervenção de variáveis aleatórias, variam na estimativa do VaR de acordo com sua aleatoriedade.

Yamai, Yoshiba, and others (2002) observa que em distribuições de perda com caudas longas, o desvio padrão relativo ao ES fica muito maior que aquele relativo ao VaR, enquanto que ao analisar distribuições aproximadamente normais, os desvios padrões relativos são praticamente iguais.

Tal fato é explicado pela probabilidade de perdas grandes e não frequentes em distribuições de caudas longas ser alta, tendo em vista que o ES estimado é afetado por elas. Já o VaR é pouco afetado por essas perdas por negligenciar as perdas além do quantil selecionado.

Ademais, é possível analisar que o aumento no tamanho das amostras é capaz de reduzir o erro da estimação do ES, sendo necessário, para uma distribuição estável de coeficiente de estabilidade igual a 1,5 (quando o coeficiente é 2 a distribuição é normal, sendo que menores valores significam caudas maiores), amostras com centenas de milhares de observações para obter-se o mesmo nível de desvio padrão que aquele relativo ao VaR. Isso faz com que Simulações de Monte Carlo tomem proporções muito grandes, necessitando de poder computacional ainda maior.

Exemplo prático:

A rotina abaixo, elaborada no R, exemplifica a estimação do Expected Shortfall para um portfólio univariado.

library(readr)
library(tidyverse)
library(forcats)
library(ggthemes)
library(PerformanceAnalytics)

Como primeiro passo, instalamos os pacotes acima para importação (readr), manipulação dos dados (tidyverse, forcats), visualização (ggthemes) e para cálculo de indicadores de portfólios (PerformanceAnalytics).

X_GSPC <- read_csv("D:/Programacao/riscoderivativos/static/input/^GSPC.csv")
View(X_GSPC)

sp500 <- as_tibble(X_GSPC)

colnames(sp500) <- c("data", "abertura", "maximo", "minimo", "fechamento","fechamento_adj", "volume") 

Após instalação dos pacotes, deve-se importar os dados do portfólio, nesse caso, univariado. Na rotina referida, foi utilizada uma série do índice S&P500 entre agosto de 2009 e agosto de 2019, com cotação de abertura e fechamento diária.

fechamento <- sp500$fechamento

sp500$variacao2 <- Return.calculate(xts(fechamento,order.by = as.Date(sp500$data))
                                    ,method = "simple")

Returns <- sp500$variacao2

sp500 %>% ggplot(aes(x=variacao2))+ 
  geom_histogram()+ 
  theme_minimal()

Com os dados importados, calcula-se a variação diária do índice através da função “Return.calculate”. A variação também pode ser calculada através do índice em t (\(P_{t}\)) sobre o índice em t-1 (\(P_{t-1}\)), como segue:

\[ \Delta P = \frac{P_{t}}{P_{t-1}}-1 \]

VaR(R = Returns,p = .95,method = "historical")

VaR95 <- VaR(R = Returns,p = .95,method = "historical")

ES(R = Returns,p = .95,method = "historical",)

ES95 <- ES(R = Returns,p = .95,method = "historical",)

Com a variação diária já calculada, tanto o VaR quanto o Expected Shortfall podem ser calculados para intervalos de confiança diferentes. Na função VaR e ES do pacote “PerformanceAnalytics”, o p (nível de confiança) pode ser definido em ambas as funções, assim como o método de estimação, o qual pode ser histórico, gaussiano/normal e modificado (“historical”, “gaussian” e “modified”).

# ES e VaR através de diferentes métodos (paramétricos e não paramétricos)

dfretornos <- data.frame(Returns)

chart.VaRSensitivity(xts(dfretornos,order.by = as.Date(sp500$data)),
                     methods = c("GaussianVaR","HistoricalVaR", "GaussianES", "HistoricalES"), 
                     elementcolor = "darkgrey")

Para elucidar os diferentes métodos de estimação do VaR e ES, o pacote “PerformanceAnalytics” permite gerar o gráfico abaixo, onde no eixo “X” encontra-se o nível de confiança e no eixo “Y” os valores do VaR e ES.


Figura 2: Comparação entre medidas de risco

Referências

Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1999. “Coherent Measures of Risk.” Mathematical Finance 9 (3): 203–28.

Martin, R Douglas, and Shengyu Zhang. 2017. “Nonparametric Versus Parametric Expected Shortfall.” Available at SSRN 2747179.

Yamai, Yasuhiro, and Toshinao Yoshiba. 2005. “Value-at-Risk Versus Expected Shortfall: A Practical Perspective.” Journal of Banking & Finance 29 (4): 997–1015.

Yamai, Yasuhiro, Toshinao Yoshiba, and others. 2002. “Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization.” Monetary and Economic Studies 20 (1): 87–121.

Contribuíram como co-autores deste artigo os analistas do núcleo de derivativos e risco Vinícius Custódio, João Pedro Smielevski Gomes e Thiago Ranzolin Barreto.

Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Valor em Risco

Valor em Risco

História do VaR

O termo “Valor em Risco” derivado do inglês Value at Risk (VaR), foi introduzido no vocabulário financeiro apenas no começo dos anos 1990, apesar de suas medidas terem sido originadas muito antes.

Seu início mais provável retrocede à Bolsa de Valores de Nova York (NYSE), por volta de 1922, na qual, inicialmente, uma regra exigia que as firmas mantivessem um capital de 10% de seus ativos composto por posições de capital próprio e contas a receber de clientes. Em 1975, a Comissão de Títulos e Câmbio dos Estados unidos (SEC) estabeleceu novas regras para o capital das firmas, cujo objetivo era proteção contra perdas que poderiam ocorrer durante o período existente na liquidação de posições. Esse sistema dividiu ativos financeiros em várias categorias e subcategorias, para evitar posições muito concentradas em um único ativo.

A volatilidade nos juros americanos levou a SEC a atualizar as regras em 1980, as quais passaram a ser baseadas em análise estatística de dados históricos do mercado. Sua intenção era refletir o .95-quantil da quantidade de dinheiro que uma firma poderia perder em um período de liquidação de um mês. Apesar de não ter sido nomeado na época, essa era uma medida de valor em risco.

Em meados de 1990, muitas firmas careciam de maneiras de gerenciar o risco, foi quando a J.P Morgan desenvolveu um sistema de valor em risco em toda a empresa, modelando inúmeros fatores-chave. Uma matriz de covariância era atualizada trimestralmente com dados históricos e todos os dias as unidades de negociação reportavam a variação de suas posições de acordo com cada fator-chave. Esses dados eram agregados e expressavam o valor do portfólio como um polinômio linear dos fatores de risco, utilizando várias métricas de VaR para analisá-lo.

De 1990 em diante, a pedido do CEO da J.P. Morgan, um dado único de valor em risco deveria ser colocado nos demonstrativos de resultado em um relatório diário para as reuniões de tesouraria às 16:15, representando o risco que seria enfrentado no dia seguinte.

A partir de 1994, a metodologia desenvolvida na J.P Morgan, denominada RiskMetrics foi distribuída sem custo na internet, aumentando o interesse das firmas e investidores no gerenciamento de risco e possibilitando o aprimoramento das métricas de valor em risco.

Como podemos definir o Valor em Risco?

Em sua definição formal, o VaR de um portfólio é uma função com dois parâmetros: o horizonte de tempo (T) e o nível de confiança (X). Ele representa o nível de perda que temos X% de confiança que não vai ser excedido em um período T, podendo ser calculado tanto pela distribuição de probabilidades dos ganhos quanto pela distribuição de probabilidades das perdas.

Como exemplo, ao utilizar T representando três dias e X=90, o Valor em Risco é a perda no décimo percentil da distribuição de ganhos esperados dos próximos três dias. Da mesma forma, é a perda no nonagésimo percentil da distribuição de perdas dos próximos três dias. Genericamente, quando utilizada a distribuição de ganhos, o VaR é igual ao negativo dos ganhos no (100-X)-ésimo percentil da distribuição, como demonstrado na ilustração:

Figura 1: Distribuição de ganhos

Analogamente, quando utilizada a distribuição de perdas, o VaR é igual às perdas no X-ésimo percentil da distribuição:

Figura 2: Distribuição de perdas

Técnicas de estimação do VaR

Definimos o VaR de uma carteira sobre o horizonte T, com nível de confiança X, \(0< X <1\), por meio de:

\[ X=P(\Delta P(T)\leq VaR)=F^{T}(VaR), \]

na qual \(\Delta P(T)\), representa o ganho da posição sobre o horizonte T, e \(F^{T}(\cdot)\) a função de distribuição de ganhos acumulada de \(\Delta P(T)\).

Neste caso, podemos fazer algumas considerações: utilizando a distribuição de ganhos, o (100-X)-quantil de uma posição comprada será tipicamente um número negativo, tendo em vista que há perda no caso de uma queda no preço do ativo, ou seja, \(\Delta P(T)<0\), portanto o VaR é definido como o negativo desse quantil, e será sempre um valor positivo. Este método utiliza a cauda esquerda da distribuição de ganhos para níveis de confiança maiores que 50%.

VaR utilizando o Método Paramétrico

A estimação do VaR utilizando métodos paramétricos, abordada em Morettin (2008), pressupõe que os retornos de um portfólio seguem distribuições de probabilidades, uma dessas técnicas é conhecida como RiskMetrics, a qual supõe que a distribuição condicional dos retornos, dadas as informações passadas, é normal com média zero e variância \(\sigma _{t}^{2}\), ou seja, \[ \mathit{r}_{t}|\mathit{F}_{t-1}\sim \mathit{N}(0,\sigma_{t}^{2}). \] Neste caso, estimamos a volatilidade \(\sigma_{t}^{2}\) por meio do modelo EWMA (Média Móvel Exponencialmente Ponderada), o qual demonstra \[ \sigma^{2}_t=\lambda\sigma^{2}_{t-1}+(1-\lambda)r^{2}_{t-1}, \] onde \(0< \lambda<1\), e utilizando os log-retornos de \(k\) períodos, dados por \[ r_{t}[k]=r_{t+1}+r_{t+2}+…+r_{t+k}. \] A partir disso, \(\sigma_{t}^{2}[k]\), a volatilidade desse retorno, pode ser calculada por meio da modelagem GARCH, que mostra que \[ \sigma _{t}^{2}[k]=k\sigma _{t}^{2}(1). \]

Isto é, podemos escrever que \[ r_{t}[k]|\mathit{F}_{t-1}\sim \mathit{N}(0,k\sigma _{t}^{2}(1)). \] Portanto, sob os modelos adotados, a variância condicional dos log-retornos de \(k\) períodos é proporcional ao horizonte \(k\) e o desvio padrão condicional de \(r_{t}(k)\) é dado por \(\sqrt{k}\sigma_{t+1}\).

Por exemplo, utilizando uma posição comprada e um nível de confiança X=95, o RiskMetrics usa \(-1,65\sigma_{t+1}\) como VaR, representando o 0,05-quantil da distribuição normal com média zero e variância \(\sigma_{t}^{2}\), obtemos

\[ \mathit{-VaR=} \text{(Valor da Posição)}\times(-1,65)\times (\sigma _{t+1}), \]

representando a medida de um período. O VaR de \(k\) períodos é dado por: \[ \mathit{-VaR=} (Valor da Posição)\times(-1,65)\times\sqrt{k}\times (\sigma _{t+1}). \]

VaR utilizando o método de Variância e Covariância

Da mesma forma que a estimação anterior, o método de variância e covariância assume que a distribuição de retornos do portfólio pode ser aproximada por uma normal. Esse método pode ser definido por \[ VaR(a_{1},a_{2},…,a_{n},X)=-\mu +z_{X}\sigma, \] no qual, \(a_{n}\) representa a participação do ativo \(n\) na carteira, \(\mu\) representa a média dos retornos ponderada pela alocação de cada ativo, ou seja, o retorno esperado, e \(z_{X}\) representa o \(X\) quantil da distribuição normal conjunta, dado que são vários ativos. As quais podem ser calculadas por \[ \mu =\sum_{i=1}^{n}a_{i}m_{i} \] e \[ \sigma ^{2}=\sum_{i=1}^{n}\sum _{j=1}^{n}a_{i}a_{j}\sigma _{i,j}, \] nas quais, \(m_{i}\) representa o retorno esperado de cada ativo e \(\sigma_{i,j}\) representa a covariância entre os ativos “i” e “j”.

VaR utilizando o Método Não-Paramétrico ou Simulação Histórica

O método dos quantis empíricos, consiste em reunir dados históricos do portfólio, montando uma distribuição com os retornos através do tempo e, de acordo com a distribuição obtida, selecionar a perda a qual é maior apenas que os (100-X)% retornos históricos. Este é um método não-paramétrico, ou seja, não requer que a distribuição seja caracterizada por parâmetros, sendo útil em casos de dados resistentes à transformações e não normais, além disso, sua vantagem é a adequação às distribuições assimétricas.

VaR utilizando a Simulação de Monte Carlo

Simulações de Monte Carlo são tipicamente utilizadas em processos os quais não podem ser previstos facilmente devido à intervenção de variáveis aleatórias. Uma maneira de utilizá-lo é modelando possíveis movimentos nos preços de um ativo em softwares como o Excel.

Para realizar tal simulação deve-se primeiro estipular um modelo para a evolução dos preços dos ativos. Um dos modelos conhecidos é o Movimento Browniano Geométrico, no qual primeiro observa-se que existem dois componentes no movimento dos preços de um ativo: deriva \((\mu)\), que é um movimento direcional constante, e um componente aleatório \((\alpha)\), representando a volatilidade do ativo. Além disso, obtemos a deriva e o desvio padrão baseando-se em seu histórico, por meio de um processo chamado de calibração do modelo.

Para tanto, projeta-se a trajetória de um ativo, utilizando os dados históricos de seu preço para gerar uma série de retornos diários, usando o logaritmo natural: \[ \text{Retorno Diário}=ln(\frac{\text{Preço do dia}}{ \text {Preço do dia anterior}}). \] Em seguida, calculamos a média de retornos diários \((\bar{r})\), a variância \((\sigma^{2})\), o desvio padrão \((\sigma)\) e obtemos a deriva e a componente aleatória por meio de: \[ \mu=\bar{r}-\frac{\sigma^{2}}{2} \] e \[ \alpha=\sigma\times(\text{Valor aleatório}). \] Sendo \((\text{Valor aleatório})\sim N^{-1}(0,1)\), podemos obter o preço do dia seguinte por meio de: \[ \text{Preço do Dia Seguinte}=(\text{Preço do dia})\times e^{(\mu+\alpha)} \] Ao repetir esse cálculo quantas vezes necessário (cada repetição representando um dia), obtemos uma simulação do movimento futuro do preço. Ao gerar um número grande de simulações, pode-se encontrar a probabilidade associada ao preço que o ativo pode atingir em determinado horizonte de tempo.

A frequência dos diferentes retornos gerados por essa simulação formarão uma distribuição normal, assim como o primeiro método apresentado.

Deficiências do VaR

Em sua essência o VaR consegue responder a uma única pergunta “o quanto as perdas podem ser ruins?”. Porém, apesar do VaR proporcionar ao investidor o potencial de perda de um portfólio, ele acaba tendo muitas críticas por conta de suas deficiências.

Inicialmente, pode-se observar que o VaR é inconclusivo para perdas maiores que as especificadas pelo determinado nível de confiança, ou seja, não possuímos informações suficientes para analisar um caso extremo que supere a probabilidade estipulada. Isso é dado pelo fato dessa métrica não utilizar uma relação entre as maiores perdas, e sim escolher o valor da perda no (100-X)-quantil. Tal problema é observado no caso abaixo:

Figura 3: Distribuição de retornos assimétrica

Assim como inúmeras métricas utilizadas nas finanças, o VaR depende das componentes utilizadas na estimação, estando exposto a deficiências nesse processo, por exemplo, no caso de um ativo cuja distribuição de retornos seja assimétrica ou com maior achatamento, ao utilizar o método da variância e covariância, assume-se que a distribuição de retornos segue a normal, ocasionando em uma análise errônea. Além disso, a existência de diferentes métodos para se calcular o VaR de um portfólio faz com que para cada cálculo haja um resultado diferente para o risco.

Por fim, analisando as quatro propriedades de medidas coerentes de risco, observadas em Hull (2012):

Monotonicidade: se um portfólio produz um resultado pior que outro portfólio por qualquer razão, sua medida de risco deve ser maior;

Invariância por translação: se uma quantidade K de capital é adicionada a um portfólio, sua medida de risco deve cair K;

Homogeneidade: mudar o tamanho do portfólio por um fator \(\lambda\) enquanto mantêm-se as quantidades relativas dos ativos, a medida de risco deve ser multiplicada por \(\lambda\);

Subaditividade: a medida de risco de dois portfólios quando é feita sua fusão não deve ser maior que a soma de suas medidas de risco antes da fusão.

Observa-se que, apesar de sempre satisfazer as três primeiras propriedades, há casos nos quais o VaR não satisfaz a quarta, tornando-o uma medida não coerente de risco.

Vantagens

Em meio a essa série de desvantagens o VaR se sustenta como uma das principais ferramentas na análise de riscos. Isso pode ser explicado dado sua capacidade de admitir a comparação de valores, que são expressos em unidade monetárias. Assim sendo, permite a comparação entre ativos de diferentes áreas do mercado. Além disso, sua larga utilização permite a comparação de riscos entre vários âmbitos tais como comparação de portfólios e entre diferentes setores.

Vantagens e Desvantagens de cada método

Método Paramétrico:

Por ser um método simples, requer pouca força computacional, mas sua simplicidade custa na confiabilidade da estimativa, que é limitada pelo uso da distribuição normal, não funciona bem para ativos que tenham retornos não lineares e pode subestimar o VaR em altos níveis de confiança e o sobrestimá-lo em baixos níveis.

Método Não-Paramétrico:

O método de simulação histórica é fácil de ser implementado. Os dados referentes ao cálculo geralmente apresentam-se em domínio público e não são necessários softwares complexos para se realizar o cálculo, de maneira que planilhas de cálculo simples são eficientes. A simulação histórica também não leva em conta suposições em relação a distribuição dos retornos e elimina a necessidade de se utilizar a matriz de covariância e outros parâmetros. Apesar disso, o método supõe que a distribuição de retornos do ativo se manterá a mesma, o que pode não ser razoável, e requer bases de dados sobre o preço do ativo, as quais nem sempre apresentam o tamanho suficiente.

Método de Monte Carlo:

O método de Monte Carlo é capaz de calcular de maneira eficiente o VaR devido ao uso de simulações não-lineares e de parâmetros, à possibilidade de adequá-la a diferentes distribuições estatísticas e ao fato de não ser tão afetada por eventos extremos. Apesar disso, é o mais complicado dentre os métodos apresentados, custando mais tempo para ser desenvolvido e necessitando grande capacidade de processamento de dados.

Referências

Hull, John. 2012. Risk Management and Financial Institutions,+ Web Site. Vol. 733. John Wiley & Sons.

Morettin, Pedro Alberto. 2008. “Econometria Financeira: Um Curso Em Séries Temporais Financeiras.”

Contribuiu como co-autor deste artigo o analista do núcleo de derivativos e risco Vinícius Custódio. LinkedIn

Posted by Arthur Vier in Derivativos & Riscos, 0 comments
Betting against beta

Betting against beta

Betting agains beta (BAB), ou apostando contra o beta é uma conhecida estratégia de investimento que surgiu com o trabalho de Frazzini&Pedersen(2014). De fato, a estratégia é tratada como um fator explicativo de retornos e deriva de uma conhecida “anomalia” de mercado, a low risk anomaly da qual a estratégia é um caso particular.

Em nosso artigo anterior, utilizamos esta estratégia para apresentar a plataforma Quantopian. Agora vamos aprofundar na análise e implementação desta estratégia, pormenorizando seus fundamentos, (tentativas de) explicações sobre o porquê esta estratégia funciona e como implementá-la no Quantopian.

Anomalia do baixo risco

Esta anomalia, em relação a hipótese de mercados eficientes e das teorias de risco-retorno em geral, relaciona-se ao fato que, empiricamente é observado que retornos são negativamente relacionados ao risco, seja este risco medido por volatilidade ou, em nosso caso de interesse, o beta. É chamada anomalia pelo simples fato que a teoria financeira, e basicamente todo o senso comum sobre o assunto, nos informa que quanto maior o risco tomado, maiores devem ser os retornos esperados, ou seja, uma relação positiva entre risco e retorno. O fato de empiricamente, dentro de uma mesma classe de ativos (e.g. ações) observarmos uma relação inversa, vai de encontro a teoria e portanto seria uma “anomalia”.

Esta anomalia em geral é tratada através de duas vertentes, da baixa volatilidade ou low volatility anomaly que busca explicar os resultados em que ações com baixa volatilidade apresentam retornos consideravelmente maiores que ações de alta volatilidade, e a anomalia do beta. A teoria de Sharpe-Lintner, o CAPM, prescreve que ações com maiores betas, assim entendido a sensibilidade do retorno de uma ação específica com relação ao retorno da carteira de mercado, devem apresentar maiores retornos que ações com menores betas. Este maior retorno seria explicado pela maior exposição ao risco de mercado, de forma que o beta seria esta medida de risco.

Porém, já na década de 70 esta relação positiva entre beta e retorno começou a ser atacada através de testes econométricos. Black, Jensen e Scholes (1972) encontraram de fato uma relação positiva, entretanto muito horizontal, com pouco retorno excedente para ativos de alto beta, o que não condizia com o CAPM. Fama&French (1992) também atacaram o beta em seu artigo seminal. Considerando os fatores valor e tamanho, o mercado tornava-se um fator de pouco poder de explicação.

Em seu livro “Asset Management: a systematic approach to factor investing”, Andrew Ang (2014) fornece um bom resumo da anomalia do beta. Um dos problemas centrais, e que pode causar as discrepâncias com relação ao CAPM observadas, é como estimar o beta de uma ação e relacioná-lo aos retornos futuros. A grande maioria dos artigos utiliza uma regressão linear simples entre retornos passados tanto do ativo quanto do mercado para a estimação do beta. Feita a estimação, o que se obtém é uma medida ex-ante que será então comparada ao retornos ex-post (i.e. futuros). Por detrás desta metodologia está a assunção que os betas estimados permanecerão os mesmos durante o período futuro, o que na prática não é verdade.

Valores de beta das ações pode variar bastante a medida que novas informações fluem dia após dia, em outras palavras, o beta não é constante no tempo. A categorização de ações de alto/baixo beta em um período pode não ser mantida em período posterior, o que poderia ao menos em parte explicar a falha dos testes em verificar a relação positiva entre retornos e beta.

De qualquer forma, a previsão que o CAPM faz é que os retornos e betas contemporâneos estão positivamente relacionados. Ou seja, o que realmente interessa para a teoria é a relação entre beta/retorno realizados na mesma janela temporal. Quando feitos testes neste sentido os retornos se apresentam crescentes quanto maior o beta realizado. Porém existe um problema de ordem prática com a teoria, não é possível fazer uma estimação de variáveis contemporâneas! Não podemos estimar o beta sem que ainda tenhamos observado o retorno da carteira de mercado. E este problema nos remete a situação anterior, onde os retornos ex-post estão negativamente relacionados aos betas ex-ante.

BAB e sua fundamentação

O fator BAB foi originalmente proposto por Frazzini&Pederesen (2014) que constroem o fator fazendo-o comprar ações de baixo beta e vender aquelas de alto risco sistemático. Porém construir um fator para negociar a anomalia do beta não pode ser feito apenas tomando as diferenças dos portfólios na figura 1 abaixo. As diferenças nos retornos médios entre os quintis são pequenos, a verdadeira diferença reside nas razões de Sharpe entre as carteiras. Os autores portanto, formam seu fator BAB escalando os portfólios de beta baixo e alto pelos betas ex-ante dos próprios portfólios.

As ações são classificadas em ordem crescente com base em seu beta estimado e são atribuídas a um dos dois portfólios: beta baixo e beta alto. Em cada carteira, os títulos são ponderados pelos betas (ou seja, as ações de beta inferior têm pesos maiores no portfólio de beta baixo e aquelas de beta mais altos têm pesos maiores no portfólio de beta alto). As carteiras são rebalanceadas a cada mês.

Porém, apenas ponderando o peso das ações pelos seus betas no momento de formação do portfólio, este não seria neutro ao mercado e, portanto, não poderia ser considerado um fator de risco que explica retornos em excesso ao retorno do mercado. Assim, é necessário reescalar as posições compradas e vendidas pelos seus respectivos betas e o resultado será um portólio market neutral (i.e. ex-ante ao menos) porém alavancado. As ações de baixo beta necessitarão de alavancagem para chegar a um beta igual a 1, enquanto as ações vendidas, de alto beta, serão apenas uma fração menor da carteira e não financiarão completamente a parte comprada. A diferença, é tomada emprestada a taxa de juros livre de risco.

Ao final, o retorno do fator BAB pode ser escrito como:

$$BAB_{t+1} = \frac{r_{L,t+1} − r_f}{\beta_{L,t}} – \frac{r_{H,t+1} − r_f}{\beta_{H,t}}$$

onde \(r_{L,t+1}\) é o retorno da carteira de beta baixo e \(r_{H,t+1}\) é o retorno da carteira de beta alto. Os betas dos sub-portfólios baixo (comprado) e alto (vendido) no início do período são dados por \(\beta_{L,t}\) e \(\beta_{H,t}\), respectivamente.

Por ser um fator construído de forma a ser neutro ao mercado, qualquer retorno positivo que esta carteira apresente será um retorno não explicado pelo mercado, um retorno extraordinário.

Quantopian research

Terminamos com a teoria e passamos a prática. Conforme prometido no artigo anterior, vamos demonstrar os códigos Python necessários para implementar a estratégia BAB no Quantopian.

Começamos no ambiente de pesquisa. Vamos importar as bibliotecas necessárias para realizar o pipeline de aquisição de informações e cálculo de fatores (i.e. beta), do universo de ativos de nosso interesse e do Alphalens para análise da estratégia.

Utilizaremos a função SimpleBeta para calcular o beta das ações e então ranquea-los. Esta é uma função de cálculo de fator fornecida pela API do Quantopian e é desenvolvida tendo em mente desempenho, ela é diversas vezes mais rápida que, por exemplo, extrair o beta via regressão linear de alguma biblioteca como a StatsModels.

# Importa Pipeline
from quantopian.pipeline.data.builtin import USEquityPricing
from quantopian.research import run_pipeline
from quantopian.pipeline import Pipeline
from quantopian.pipeline.factors import SimpleBeta
from quantopian.pipeline.filters import QTradableStocksUS
# Importa Alphalens
import alphalens as al
# Gerais
import datetime as dt

Para análise no Alphalens, deve-se estabelecer as datas inicial e final.

# Start and end dates for analysis
sdate = '2008-01-01'
edate = '2008-12-31'

Criando a pipeline

A função make_pipeline é ideal para coletar os dados dos ativos e fazer o screen destes. Ou seja, ela carrega dados de preços, volumes, fundamentos, etc. o que for necessário para o analista criar métricas, chamadas de “fatores” no Quantopian, que então possibilitam a filtragem destes ativos, restando apenas aqueles interessantes para compor a carteira.

Cálculos mais detalhados, como por exemplo os pesos que os ativos escolhidos irão ocupar na carteira não são adequados de serem feitos nesta função. Portanto, usualmente o que make_pipeline deve retornar são os valores dos filtros aplicados, se forem utilizados mais tarde no algoritmo, e valores lógicos indicando se o ativo faz parte da carteira como compra (long) ou venda (short). Ativos que não farão parte do portfólio neste momento podem ser excluídos da lista.

# Pipeline definition
def make_pipeline():
    """Pipeline for Betting Against Beta strategy.
    Author: Clube de Finanças Esag
    Collect assets and benchmark returns.
    Computes assets betas. Remember, beta is not affected by risk-free rate
    Rank the assets according to beta, sell top half and buy lowest half
    Rebalance every month"""
    universe = QTradableStocksUS() 
    beta = SimpleBeta(target=symbols('SPY'), regression_length = 252)
    z = - beta.zscore(mask = universe) # Lower betas, higher zscore

    # Filer for zscore >= 0
    zgeq0 = (z >= 0)

    return Pipeline(
        columns = {
            'beta': beta,
            'zscore': z,
            'zgeq0': zgeq0,
        },
        screen = (universe & z.notnan() & z.notnull())
    )

Agora basta rodar esta função que criamos, make_pipeline, através da API run_pipeline e atribuir o resultado a uma variável, que chamamos de output. Utilizamos o método head para verificar o formato retornado, que é um pandas DataFrame.

output = run_pipeline(make_pipeline(), sdate, edate)
output.head()
beta zgeq0 zscore
2008-01-02 00:00:00+00:00 Equity(2 [ARNC]) 1.344555 False -0.739436
Equity(24 [AAPL]) 1.183625 False -0.273716
Equity(31 [ABAX]) 1.207313 False -0.342267
Equity(41 [ARCB]) 1.346829 False -0.746016
Equity(52 [ABM]) 1.081440 True 0.022002

Agora que temos o resultado do pipeline, podemos fazer os cálculos necessários para atribuir os ativos às suas carteiras e seus pesos nesta. Como as carteiras serão apenas duas, metade long e outra metade dos ativos short, a coluna zgeq0 serve como indicador dos ativos comprados (true) e ativos vendidos. Já o cálculo dos pesos é realizado em duas etapas.

A primeira é atribuir os pesos proporcionais ao beta do ativo, dentro da sua carteira. Ao final da primeira etapa, teremos a soma dos pesos dos ativos comprados igual a 1 e a soma dos ativos vendidos igual a -1. Na segunda etapa deve-se reescalar estes pesos pelos betas das carteiras comprada e vendida, chegando aos pesos finais de cada ativo no portfólio completo.

# First round
# Compute weights for assets in output
k = 2.0 / sum(abs(output['zscore']))
output.loc[:, 'weight'] = k * output['zscore']
output.loc[:, 'beta_w'] = output['beta'] * output['weight']
print('Soma dos pesos comprados: ' + str(sum(output[output['zgeq0']]['weight'])))
print('Soma dos pesos vendidos: ' + str(sum(output[~output['zgeq0']]['weight'])))
Soma dos pesos comprados: 1.0
Soma dos pesos vendidos: -1.0
# Second round
betaL = sum(output[output['zgeq0']]['beta_w'])
betaH = sum(-output[~output['zgeq0']]['beta_w'])
output.loc[output['zgeq0'], 'weight'] = output.loc[output['zgeq0'], 'weight'] / betaL
output.loc[~output['zgeq0'], 'weight'] = output.loc[~output['zgeq0'], 'weight'] / betaH
print('BetaL: ' + str(betaL))
print('BetaH: ' + str(betaH))
print('Soma dos pesos comprados: ' + str(sum(output[output['zgeq0']]['weight'])))
print('Soma dos pesos vendidos: ' + str(sum(output[~output['zgeq0']]['weight'])))
BetaL: 0.667586254686
BetaH: 1.61494272142
Soma dos pesos comprados: 1.49793377707
Soma dos pesos vendidos: -0.619217007969

E para verificar como ficou nosso DataFrame, novamente o método head:

output.head()
beta zgeq0 zscore weight beta_w
2008-01-02 00:00:00+00:00 Equity(2 [ARNC]) 1.344555 False -0.739436 -2.311748e-06 -5.019681e-06
Equity(24 [AAPL]) 1.183625 False -0.273716 -8.557359e-07 -1.635728e-06
Equity(31 [ABAX]) 1.207313 False -0.342267 -1.070051e-06 -2.086322e-06
Equity(41 [ARCB]) 1.346829 False -0.746016 -2.332319e-06 -5.072912e-06
Equity(52 [ABM]) 1.081440 True 0.022002 1.663968e-07 1.201309e-07

Análise no Alphalens

Alphalens é uma biblioteca desenvolvida pelo próprio Quantopian que auxilia na análise preliminar de fatores explicativos de retorno, que os autores chamam de alfa. A função do Alphalens, portanto, é desenvedar quais fatores realmente possuem poder preditivo sobre os retornos dos ativos e desta forma orientar na formação de portfólios.

Esta biblioteca é capaz de gerar uma grande gama de estatísticas e gráficos dos fatores que incluem relatórios de retornos, turnover, grupamentos, coeficientes de informação, etc.

Uma vez que tem-se o DataFrame resultado da pipeline, devemos coletar os preços dos ativos utilizados pela estratégia no período de análise. O primeiro passo para tanto é saber quais ativos foram estes e guardá-los em uma lista. Em seguida utiliza-se a função da API get_pricing para baixar os preços destes ativos no período de interesse.

# Testing with Alphalens
# Get list of unique assets from the pipeline output
asset_list = output.index.levels[1].unique()

# Query pricing data for all assets present during
# evaluation period
asset_prices = get_pricing(
    symbols = asset_list,
    start_date = sdate,
    # end_date must be further down than edate from pipeline
    end_date = dt.datetime.strptime(edate, '%Y-%m-%d') + dt.timedelta(180),
    fields = 'open_price',
)

Uma vez com os preços capturados, o Alphalens fornece uma função para analisarmos o poder preditivo do nosso fator (i.e. os pesos calculados com base na estratégia BAB) em explicar retornos futuros. Basicamente esta função alinha o valor do fator em uma data t com os retornos obtidos em datas futuras de nossa escolha, por exemplo t+30, t+60, t+90. No caso de nossa estratégia, estaremos utilizando o fator weight para separar os ativos em duas metades, alto e baixo beta. Assim o argumento quantiles é utilizado para criar um determinado número de grupos de ativos dados pelo valor do fator. Se nosso objetivo fosse, por exemplo, comprar os 20% dos ativos de menores beta (maiores pesos) e vender os 20% com maiores betas, o argumento quantiles seria igual a 5 (cinco partes iguais cada uma com 20% dos ativos) e o Alphalens irá simular a compra do quantil mais alto e a venda do mais baixo.

# Get asset forward returns and quantile classification
# based on beta
factor_data = al.utils.get_clean_factor_and_forward_returns(
    factor = output['weight'],
    prices = asset_prices,
    quantiles = 2,
    periods = (30, 60, 90),
)
factor_data.head()
Dropped 0.6% entries from factor data: 0.6% in forward returns computation and 0.0% in binning phase (set max_loss=0 to see potentially suppressed Exceptions).
max_loss is 35.0%, not exceeded: OK!
30D 60D 90D factor factor_quantile
date asset
2008-01-02 00:00:00+00:00 Equity(2 [ARNC]) -0.007205 -0.003878 0.086637 -2.311748e-06 1
Equity(24 [AAPL]) -0.350630 -0.281026 -0.070558 -8.557359e-07 1
Equity(31 [ABAX]) -0.176192 -0.357959 -0.284639 -1.070051e-06 1
Equity(41 [ARCB]) 0.389765 0.440274 0.793690 -2.332319e-06 1
Equity(52 [ABM]) 0.006953 0.111918 0.023621 1.663968e-07 1

Visualizando resultados preliminares

Agora que possuímos os dados preparados pelo Alphalens, é possível visualizar alguns resultados. Apresentamos abaixo apenas um gráfico de retornos futuros separados por quantis, entretanto a biblioteca possui várias outras funções sendo uma delas bastante completa, que traz diversas tabelas e gráficos com inúmeras análises, al.tears.create_full_tear_sheet(factor_data) que não será mostrada aqui devido ao grande tamanho de sua resposta. Sugerimos também a leitura do tutorial do Alphalens.

# Calculate mean return by factor quantile
mean_return_by_q, std_err_by_q = al.performance.mean_return_by_quantile(factor_data)

# Plot mean returns by quantile and holding period
# over evaluation time range
al.plotting.plot_quantile_returns_bar(
    mean_return_by_q.apply(
        al.utils.rate_of_return,
        axis=0,
        args=('1D',)
    )
);

Os resultados obtidos, mesmo que preliminarmente, parecem promissores. O quantil 2, nossos ativos comprados, obtiveram retornos consideravelmente maiores que o quantil vendido, ou seja, nossa estratégia long-short em tese extrairá este spread de retornos e está pronta para ser levada ao ambiente de backtest, a IDE.

Portando para a IDE

A função make_pipeline foi criada de forma a ser copiada do ambiente de pesquisa e colada diretamente na IDE para implementação do algoritmo de backtest, sem a necessidade de maiores adaptações. Este é todo o propósito da bilioteca Pipeline. Entretanto, os cálculos que realizamos fora desta função, como por exemplo a definição dos pesos, devem sem implementadas no algoritmo de acordo com as bibliotecas e funções disponíveis neste.

Além das funções já programadas no ambiente de pesquisa, para o correto funcionamento do backtest deve-se programar obrigatoriamente a função initialize, que roda uma única vez ao início do algoritmo, e opcionalmente as funções handle_data e before_trading_start. Nosso algoritmo não faz uso de dados minuto-a-minuto, portanto não será implementada a função handle_data. Já a função before_trading_start é utilizada para cálculos antes de o mercado abrir, todos os dias. Também não haverá necessidade em implementar esta função, uma vez que nosso portfólio é rebalanceado apenas uma vez por mês.

Prosseguimos, portanto, com a implementação da função inicial. Relembrando, ela é executada apenas uma vez no início do backtest, logo, esta é a função onde faremos o agendamento (i.e. schedule) do rebalanceamento da carteira, que por sua vez irá chamar o pipeline criado.

import quantopian.algorithm as algo
# Pipeline
from quantopian.pipeline import Pipeline
from quantopian.pipeline.data.builtin import USEquityPricing
from quantopian.pipeline.filters import QTradableStocksUS
# Importing Factors used
from quantopian.pipeline.factors import  SimpleBeta
# Import Optimize API module
import quantopian.optimize as opt

def initialize(context):
    """
    Called once at the start of the algorithm.
    """    
    # Rebalance every month
    algo.schedule_function(
        rebalance,
        algo.date_rules.month_start(),
        algo.time_rules.market_open(),
    )
    # Create our dynamic stock selector.
    algo.attach_pipeline(make_pipeline(), 'pipeline')

Vejam como a função de inicialização é simples para esta estratégia. Antes de mais nada, é necessário importar as bibliotecas que serão utilizadas pelo algoritmo. No caso, estamos usando apenas implemetações do próprio Quantopian, entre elas funções da pipeline, fatores e o módulo de otimização que na verdade será usado apenas para o envio das ordens, conforme sugere a própria plataforma.

Após, faz-se a definição da função initialize. Tudo o que temos de fazer é programar nossa função de agendamento, schedule_function e informar qual o pipeline que será utilizado. Na função de agendamento informamos qual função deve ser chamada periodicamente, rebalance que definiremos a seguir e qual a periodicidade e momento da chamada. Nosso algoritmo chama a função rebalance todo início de mês assim que o mercado abre. Já a nossa conhecida função make_pipeline é atribuída ao nome pipeline e seu resultado será chamado durante a execução do rebalanceamento da carteira.

def rebalance(context, data):
    """
    Execute orders according to our schedule_function() timing.
    It is called every month start.
    """
    # Actually runs the pipeline. A DataFrame is the output
    output = algo.pipeline_output('pipeline')       
    output.dropna(inplace=True)

    # Compute weights for assets in output
    k = 2.0 / sum(abs(output['zscore']))
    output.loc[:, 'weight'] = k * output['zscore']
    output.loc[:, 'beta_w'] = output['beta'] * output['weight']
    betaL = sum(output[output['zgeq0']]['beta_w'])
    betaH = sum(-output[~output['zgeq0']]['beta_w'])
    output.loc[output['zgeq0'], 'weight'] = output.loc[output['zgeq0'], 'weight'] / betaL
    output.loc[~output['zgeq0'], 'weight'] = output.loc[~output['zgeq0'], 'weight'] / betaH

    # Sets objective function
    obj = opt.TargetWeights(output['weight'])
    # Execute orders to rebalance portfolio
    algo.order_optimal_portfolio(
        objective=obj,
    )

E por fim, implementa-se a função de rebalanceamento. É nesta função que chamamos a aquisição dos dados através de pipeline_output e salvamos o resultado daquele dia em uma variável chamada output. Este é um DataFrame contendo os zscores exatamente como mostrado no ambiente de pesquisa. Os mesmos ajustes dos pesos são realizados para tornar (na medida do possível) a estratégia em market neutral e então o objeto de otimização é utilizado para enviar as ordens.

Como nosso algoritmo calcula diretamente os pesos de cada ativo na carteira, utiliza-se a função TargetWeights para esta informação e então order_optimal_portfolio se encarrega de enviar as ordens de compra e venda necessárias para obter a carteira desejada com os pesos corretos.

Na figura acima, podemos verificar o resultado do backtest para o ano de 2009, da grande crise financeira. A lógica central de estratégias long-short como esta é terem pouca ou nenhuma correlação com o benchmark, no caso o índice S&P500, e ainda assim apresentarem retornos consistentemente positivos, indicando que a estratégia possui alpha. Este teste não foi tão animador quanto os resultados de pesquisa. Enquanto, de fato, a estratégia obteve baixa correlação com o mercado, representada pelo seu beta com pequena magnitude, os retornos não foram atraentes, ficando muito próximos a zero no valor acumulado e um drawdown não desprezível de quase 20%1.

Conclusão

Este artigo apresentou uma implementação simplificada da estratétia Betting Against Beta – BAB utilizando a plataforma Quantopian. O objetivo maior foi demonstrar o uso da plataforma e não necessariamente desenvolver uma estratégia lucrativa de investimento.

Uma vez conhecida a estratégia, a teoria por trás desta e o algoritmo de operação, pode-se utilizar os ambientes de pesquisa e desenvolvimento do Quantopian para pesquisar, testar e implementar (em Python somente) a estratégia. A plataforma dispõe de um grande conjunto de dados, especialmente para o mercado Estado Unidense, mas também existem dados para o Brasil. Diversas técnicas de algorithmic trading podem ser investigadas, aprimoradas e compartilhadas.

Referências

ANG, Andrew. Asset management: A systematic approach to factor investing. 2014.

BLACK, Fischer et al. The capital asset pricing model: Some empirical tests. Studies in the theory of capital markets, v. 81, n. 3, p. 79-121, 1972.

FRAZZINI, Andrea; PEDERSEN, Lasse Heje. Betting against beta. Journal of Financial Economics, v. 111, n. 1, p. 1-25, 2014.


  1. Este resultado pode ser devido a nossa implementação da estratégia ou ao pouco tempo coberto pelo backtest. O resultado da estratégia BAB, para um longo período de tempo pode ser encontrado no site da AQR Capital em https://www.aqr.com/Insights/Datasets 

Posted by Rafael F. Bressan in Code, Derivativos & Riscos, 0 comments
Estratégias Iniciais no Mercado de Opções

Estratégias Iniciais no Mercado de Opções

Se você anda pesquisando sobre o mercado financeiro ou possui particular interesse nesse campo, com certeza você já esbarrou na palavra “derivativos”. Ao longo do tempo esse mercado adquiriu grande representatividade para os agentes econômicos, servindo como mecanismo de proteção contra a oscilação de preços e também como ferramenta para a especulação.

De maneira intuitiva podemos entender os derivativos como títulos que possuem origem em outro mercado ou que estão intimamente relacionados à esse mercado. De forma pragmática, “Derivativos são títulos cujos valores dependem dos valores de outras variáveis mais básicas”, Antonio Carlos Figueiredo (2016, p. 01). Temos como alguns exemplos desses instrumentos, o mercado futuro de petróleo, cujo preço depende dos volumes e patamares de preços no mercado à vista de petróleo.

Com o objetivo de diferenciar o mercado de derivativos do entendimento usual de que um “título” = “investimento”, Martin Mayer define a utilização desse mercado: “Não se pode dizer que uma operação com derivativos é um investimento. Na realidade, representa uma expectativa da direção, dimensão, duração e velocidade das mudanças do valor de outro bem que lhe serve de referência” (Martin Mayer, artigo “The Next Generation”, revista The Bankers, 1997).

Dentro desse mercado podemos segmentá-lo em quatro tipos: a termo, futuro, de opções e de swap. O último, em função da sua semelhança com o mercado a termo, não é considerado por alguns especialistas como uma quarta modalidade de derivativo.

Nesse artigo daremos continuidade ao estudo sobre o mercado de opções. Em consonância com o primeiro post publicado no blog do Clube de Finanças, “Introdução ao Mercado de Opções”, vamos apresentar algumas estratégias que podem ser operacionalizadas nesse mercado, usando as posições conhecidas como “travas”, utilizadas essas com o objetivo de limitar o risco. Analisaremos as principais estratégias dentro dessa posição, começando pelas “Posições Sintéticas”, “Travas de alta e baixa” e a estratégia “Butterfly”.

Estratégias

  • Posições Sintéticas

Dentre as posições sintéticas temos, de forma pragmática, uma situação cujo investidor acredita numa determinada situação de mercado (como por exemplo, uma elevação do Ibovespa), mas, para se proteger de algum possível erro na sua predisposição ele mescla algumas estratégias para proteção (hedge). Então, iremos aos exemplos desde expectativa de alta, quanto baixa de mercado:

De início, assumindo uma expectativa de alta no mercado, o indivíduo fica comprado no índice Bovespa (exemplo, compra de BOVA11), também denominado de Long Instrument.

Conforme observamos na tabela 1.1 acima, o valor da compra de BOVA11 no mercado à vista é de R$ 90,00 e, de acordo com possíveis (des)valorizações, o seu preço tende a mudar no futuro. Caso o investidor venda o ativo, ele realizará seu lucro (ou prejuízo) de acordo com o “Resultado Final” e demonstrado no gráfico abaixo.

Com o intuito de se proteger de uma possível queda no índice, usar-se-ia uma Long Put, ou seja, comprar uma opção de venda do mesmo ativo (BOVA11). Assim, como exemplificado na tabela 1.2, se pagaria um prêmio ao vendedor desta put para ter o direito de realizar uma venda de BOVA11 a R$ 90,00 caso este ativo perca valor – no caso do vendedor, este teria a obrigação de comprar o ativo.

Aqui, observamos que caso o ativo se valorize, o investidor não irá efetuar seu direito de venda a R$ 90,00, ficando com apenas os custos do prêmio pago. Caso contrário, quanto maior a desvalorização frente aos R$ 90,00, mais In The Money (ITM) esta posição ficará.

Ao mesclarmos estas duas estratégias, chegaremos a uma Long Synthetic Call:

Sendo assim, há um limite de perda máxima de R$ 5,00 caso sua expectativa de valorização do mercado não se concretize. Para este mesmo exemplo, formamos uma estratégia inversa, ou seja, expectativa de desvalorização de mercado, cujo investidor ficaria vendido em BOVA11 – denominado de Short Instrument.

Junto a esta expectativa, neste caso o investidor pretende se proteger de uma eventual valorização de mercado. Com isto, ele irá adquirir o direito de comprar uma ação aos mesmos R$ 90,00, ou seja, Long Call. Ilustrados na tabela 1.5:

Ao juntar estas duas estratégias, resultarão em uma Long Synthetic Put, cujo indivíduo ficaria protegido de uma inesperada valorização de mercado fixando sua perda máxima em R$ 5,00, conforme ilustrado abaixo:

Como segundo exemplo, temos uma expectativa de desvalorização da Bolsa onde o indivíduo fica vendido em BOVA11. Segundo o exemplo anterior, resultaremos na mesma estratégia de Short Instrument.

No entanto, para este exemplo vamos supor que o investidor em questão será a parte vendedora do mercado de opções (ou seja, ele terá a obrigatoriedade de compra/venda e receberá um prêmio pelo ativo). Conforme ilustraremos na tabela a seguir, este ficará vendido em uma opção de venda (Short Put) com os mesmos R$ 90,00 de strike.

Como resultado, chegaremos a Short Synthetic Call cuja perda é diluída caso sua primeira estratégia não se concretize. No entanto, ele terá seu ganho limitado a R$ 5,00 conforme figura abaixo:

Como exemplo de expectativa de elevação de mercado. Teremos um Long Instrument, ou seja, o investidor comprado em BOVA11.

E para se proteger, ele ficaria vendido em uma opção de compra a R$ 90,00 – denominada de Short Call.

Por fim, estas duas estratégias resultariam em um Short Synthetic Put, também chamada de “Venda Coberta”. Assim como no outro caso, limitamos o ganho máximo em R$ 5,00, no entanto, ocorreria um hedge para uma eventual desvalorização de mercado.

  • Posições Bull e Bear

No primeiro artigo sobre o mercado de opções, a Trava de alta com a compra e venda simultânea de duas opções de compra (Calls) foi demonstrada ao leitor. Neste artigo pretendemos abordar a Trava de baixa e também a Trava de alta, no entanto, executando essa última estratégia através de opções de venda (Puts).

Assumindo a expectativa de um mercado em baixa, podemos explorar a Trava de baixa operada através de duas puts,. Assim como outras travas, essa posição também pode ser montada com calls. Chamada de Bear Put Spread, nessa estratégia o investidor compra uma put de preço de exercício superior e vende uma put com preço de exercício inferior. Ao executar essa posição espera-se que o preço do ativo no mercado à vista caia, porém, não alcance o preço de exercício da put vendida.

Tomando como exemplo a compra de uma put com preço de exercício de exercício de R$ 1.200 por um prêmio de R$ 115 e a venda de outra put com preço de exercício de R$ 1.000 por um prêmio de R$ 30, o investidor “trava” uma área de ganho entre R$ 1.000 e aproximadamente R$ 1.100 do preço do ativo objeto. Os gráficos e tabelas abaixo elucidam a estratégia:

Com base nas opções utilizadas como exemplos, podemos auferir que a perda máxima da operação é de R$ 85 (a diferença entre o prêmio recebido e o pago) e o retorno máximo é de R$ 115, no momento em que o ativo objeto atingir R$ 1.000. É importante salientar que as opções de venda a serem compradas e vendidas devem possuir datas de vencimento iguais.

Em contraponto à Trava de baixa, a Trava de alta pode ser montada quando o titular da posição acreditar em uma alta no mercado. Ao executar essa estratégia o investidor deseja estar “comprado”, entretanto, acredita que existe certo ponto de máximo para o preço do ativo. Podemos definir como uma expectativa de “alta moderada”.

Utilizaremos como exemplo de Trava de alta, a Bull Put Spread, operada através de opções de venda. Nessa estratégia o investidor escolhe duas opções que proporcionem o maior retorno ou a execução mais barata, vendendo uma put com preço de exercício maior e comprando uma put com preço de exercício menor.

Ao vender uma put de preço de exercício R$ 1.300 com prêmio de R$ 120 e comprar uma put com preço de exercício de R$ 1.200 e prêmio de R$ 35 o investidor “trava” o retorno máximo da operação em R$ 85 e ao mesmo tempo a perda máxima em R$ 15.

As tabelas e gráficos auxiliam na visualização da estratégia, a qual também deve ser executada através de puts com datas de vencimento iguais.

  • Butterfly

Agora, vamos explorar uma trava conhecida como Short Butterfly. Nessa estratégia, ocorre a venda de uma call e de uma put de mesmo preço de exercício, no exemplo, R$350,00, com prêmios de R$10,00 e R$15,00, respectivamente. Ocorre também a compra de uma call de preço de exercício superior, R$400,00, por R$3,00 e de uma put de preço de exercício inferior, R$300,00, por R$4,00. O objetivo dessa estratégia é restringir o risco aos preços de exercício das opções compradas. Para facilitar a compreensão, vamos ao gráfico e tabelas:

Como é possível observar no gráfico, a zona de risco dessa operação se concentra entre o preço de exercício da put comprada e o preço de exercício das opções vendidas menos o prêmio líquido da operação, neste caso, R$18,00. Também está compreendida entre o preço de exercício das opções intermediárias (inferior e superior ao preço de exercício) e o prêmio líquido. O ganho estará limitado, espera-se que o mercado oscile e permaneça sempre entre os preços da primeira call comprada e da primeira call vendida, descontado os prêmios pagos.

Com estas estratégias abordadas pretendemos que os leitores entendam um pouco mais a respeito do mercado de derivativos (principalmente, na área de opções), assim como já fora discutido em posts anteriores. Dentre os pontos que entramos em questão, boa parte destas técnicas tem o viés de reduzir a volatilidade ou exemplificar um investidor que esta aplicado em baixa volatilidade de mercado – ou em um ativo específico.

De forma geral, aqui aprendemos algumas técnicas básicas. Conforme houver mais posts acerca deste tema iremos cada vez mais mostrar ao leitor possíveis estratégias de maior complexidade, mas ainda assim, de forma didática.

Ainda ficou com alguma dúvida? Procure-nos no Instagram e no Facebook!


Referências:

Figueiredo, Antonio Carlos. 2016. Introdução aos derivativos – 3 ed. rev. e ampl. – São Paulo : Cengage Learning.

Mayer, Martin. 1997. “The Next Generation.” The Bankers.

Silva Neto, Lauro de Araújo. 1996. Opções: do tradicional ao exótico – 2. ed. São Paulo: Atlas.

Autores:

Caroline Zago, Pedro Rosa e Thiago Barreto
Posted by Thiago Ranzolin Barreto in Derivativos & Riscos, 2 comments
Precificação de opções via redes neurais

Precificação de opções via redes neurais

Em 1973, Fischer Black, Myron Scholes e Robert Merton publicaram uma maneira analítica para precificar opções, de modo que se pudesse relacionar a dinâmica do preço do ativo subjacente, uma taxa de juros livre de risco, o intervalo de tempo até a data de expiração da opção, o strike da opção e a volatilidade futura deste ativo, sem depender de um retorno esperado (algo muito mais imprevisível).

HIPÓTESES DO BLACK & SCHOLES

Como já vimos em artigos anteriores, a fórmula de precificação de Black & Scholes (Black 1973) assumia a hipótese de lognormalidade para os retornos do ativo subjacente, além de que a volatilidade implícita do ativo se manteria constante para opções de um mesmo ativo e de mesmo moneyness. Em relação a hipótese de lognormalidade, isso nos diz que temos um método paramétrico de precificação, o que pode ser ruim (temos que assumir uma distribuição que não se ajusta com o que acontece nos mercados, que apresentam caudas longas), e a volatilidade implícita constante também não se concretiza, dando origem ao fenômeno chamado de “smile de volatilidade”, algo também já tratado nos nossos artigos antigos.

ENSINANDO UMA MÁQUINA A PRECIFICAR OPÇÕES

Na década de 70, seria muito difícil construir um método prático e data-driven de precificação de opções, já que não se possuía poder computacional suficiente para realizar a mineração necessária; tínhamos que ter uma maneira analítica de precificação, o que começou com a fórmula de Black & Scholes (que garantiu o Prêmio Nobel aos pesquisadores). A partir da década de 90, com o avanço computacional, alguns pesquisadores começaram a se interessar por métodos data-driven de precificação, podendo se desvencilhar das hipóteses pouco realistas.

Para tanto, podemos pensar em algumas possibilidades: tendo informações sobre as características de uma determinada opção (o seu preço de mercado, uma volatilidade implícita realizada, um determinado intervalo de tempo até a data de expiração, com o moneyness da opção, etc…), teríamos condições de ensinar um algoritmo a precificar esta opção?

Em (Hutchinson 1994), esta abordagem foi realizada com a utilização do método das redes neurais. A abordagem do pesquisadores do MIT era de ensinar uma máquina a precificar opções de maneira não-paramétrica e que não assumisse as hipóteses tão contestadas por outros pesquisadores. Colocando como input as informações teoricamente determinantes para os preços das opções, o artigo buscou ver o ajuste das previsões realizadas com o que realmente aconteceu nos mercados. Outro bom artigo, aplicando a mesma técnica mas para opções de outro mercado, é o de (Huynh 2018).

REDES NEURAIS



Como um resumo sobre o método das redes neurais, (Friedman 2001, 389) traz que a ideia é extrair combinações lineares entre as variáveis explicativas e então modelar a variável dependente (no nosso caso, o prêmio da opção) como uma função não-linear das variáveis explicativas. O modelo de redes neurais também é chamado de multilayer perceptron, onde o modelo comprime diversas camadas de regressões logísticas com não-linearidades contínuas (Bishop 2006, 226); assim é formada a função de máxima verossimilhança que é a base das “redes de treino”.

Ao contrário do que se pensa, a pesquisa sobre métodos de inteligência artificial, e mais especificamente de redes neurais, começou já na década de 40, com (McCulloch 1943), em “A Logical Calculus of The Ideas Immanent in Nervous Activity”. A ideia era de simular as redes neurais do cérebro como forma de computadores estarem aptos a aprenderem e tomarem decisões como um humano.

Para isso, matematicamente, construímos uma função de ativação \(y\), onde \(y\) é uma função de uma função não-linear das combinações lineares entre os inputs dados (\(\phi(x)\)), ponderada por pesos que, inicialmente, são aleatórios (\(w_j\)), entre 0 e 1.

\[ y(\mathbf{x, w})=f\left(\sum_{j=1}^M w_j\phi_j(\mathbf{x})\right) \]

Esses pesos, com o método de treino estipulado (backpropagation), será alterado de forma com que se alcance o erro mínimo da função para os dados inseridos. Temos que M é o número de combinações lineares, que, somados, gerarão o primeiro input para o treino da função.

FEED FORWARD NETWORK

Agora, derivando o algoritmo para chegarmos em \(y(\mathbf{x, w})\), trazido acima:

1º – Primeiramente, teremos o somatório da multiplicação do vetor de pesos \(\mathbf{w}\) com o vetor de inputs \(\mathbf{x}\). Temos que \(w_{ji}\)é um vetor de pesos que serão alterados ao longo do treinamento da rede. Faremos esse mesmo cálculo para todas as nossas variáveis

\[ a_{ji} = \sum_{i = 0}^{D} w_{ji}^{(1)}x_i \]

2º – Temos de transformar o vetor de valores ponderados \(a_{ji}\) através de uma função de ativação, que poderá ser uma função que já é conhecida de econometristas e estudiosos da estatística: a função sigmoidal, que é a utilizada na regressão logística

\[ \sigma(a) = \frac{1}{1 + exp(-a)} \]

Com isso, temos então o que é chamado de “hidden layer”.

3º – Realizar novamente a ponderação dos valores, porém agora utilizando os hidden layers como input.

Logo, teremos uma nova ativação dos outputs pela função sigmoidal, dado por um input de uma função sigmoidal anterior. Nesse caso, duas camadas da rede neural foram utilizadas. Desta forma, podemos combinar estas várias etapas e chegar nesta função para a rede neural:

\[ y(\mathbf{x, w})= \sigma(\sum_{j=0}^M w_{kj}^{(2)} \sigma(\sum_{i=0}^D w_{ji}^{(1)}x_i)) \]

BACKPROPAGATION

Tendo um vetor de outputs, ou seja, valores preditos para o target utilizado, buscamos um vetor de pesos que minimize a seguinte função:

\[ E(\mathbf{w})= \frac{1}{2} \sum_{n=1}^N ||\mathbf{y(x_n, w) – t_n}||^2 \]

Ou seja, sendo \(y(\mathbf{x, w})\) um vetor de outputs e \(\mathbf{t_n}\) o vetor dos targets iniciais, queremos minimizar a soma dos erros quadrados. Os parâmetros que são alteráveis são os pesos, tanto da primeira camada quanto da segunda utilizada. OBS: O fator (½) é adicionado para ser cancelado junto com o expoente durante a diferenciação

A partir daqui, temos um problema computacional: simular infinitas possibilidades de vetores de pesos para identificar quais são os vetores que minimizam a soma do erro quadrado é uma tarefa computacionalmente exigente. Será que temos como usar a matemática para facilitar esse processo?

Para este problema, o método das redes neurais se utiliza do gradient descent, que é uma forma iterativa para se alcançar o mínimo de uma função.



Queremos encontrar os vetores de pesos que minimizem a função erro. Assim, aplicamos a regra da cadeia para derivar a função erro:

\[ {\frac {\partial E}{\partial w_{ij}}}={\frac {\partial E}{\partial o_{j}}}{\frac {\partial o_{j}}{\partial {\text{net}}_{j}}}{\frac {\partial {\text{net}}_{j}}{\partial w_{ij}}} \] Sendo:

\[ 1) {\frac{\partial net_j}{\partial w_{ij}}}={\frac {\partial }{\partial w_{ij}}}\left(\sum _{k=1}^{n}w_{kj}o_{k}\right) \]

que será simplesmente \(o_k\), sendo \(o_k\) um vetor que se for em relação a primeira camada, o input bruto; se for em relação a segunda layer, será o output da função de ativação.

\[ 2) {\frac{\partial o_j}{\partial net_{j}}}={\frac {\partial }{\partial net_{j}}} \varphi(net_j) = \varphi(net_j)(1 – \varphi(net_j)) \]

que é a derivada parcial da função de ativação (neste caso, a função sigmoidal), e a função abaixo, que é a derivada parcial da função perda com relação à hidden layer:

\[ 3) {\frac{\partial E}{\partial o_{j}}}={\frac {\partial E }{\partial y}} = {\frac {\partial}{\partial y}} {\frac {1}{2}}(t – y)^2 = y – t \]

Assim, atualizaremos os pesos com os resultados obtidos através da otimização, e seguiremos o processo iterativo de encontrar o mínimo da função.

OBS: Um problema do método do gradient descent é que ele pode encontrar um mínimo local, não um mínimo global, que é o que nos interessaria. Há formas de contornar este problema, como, por exemplo, assumindo uma versão probabilística para a função perda. Dada a sua complexidade, deixaremos para artigos futuros a sua explicação. Além disso, outras formas de se alcançar melhores resultados com redes neurais para opções seria de segmentar as opções em ATM (at the money), OTM (out of the money), podendo captar melhor as características de ambas as situações.

Também, por utilizarmos um dataset pequeno e gratuito, a estimação foi feita dentro da amostra; vale ressaltar a possibilidade de overfitting. Por ser uma abordagem didática, vale a demonstração. A literatura recomenda alguns anos em informações diárias para uma precificação mais assertiva, mas, por serem bases pagas (e muito bem pagas), deixaremos uma abordagem mais técnica para um futuro post.

REDE NEURAL NO R

Os dados foram retirados do site ivolatility.com

##Importando os dados que serão utilizados

smile_volatilidade <- 
  rio::import("../../static/input/IV_Raw_Delta_surface.csv") %>%
  select(period, moneyness, iv) %>% 
  mutate(period = period/365)

##Executando o algoritmo através do pacote neuralnet
##Foram escolhidas duas hidden layers para análise

rede_neural <- neuralnet(iv ~ period+moneyness, smile_volatilidade, hidden = 2)
iv_predito <- as.data.frame(rede_neural$net.result) 

df_nn <- cbind(smile_volatilidade$iv, iv_predito)

colnames(df_nn) <- c("volatilidade_implicita", "volatilidade_predita")

##Criando uma coluna com os erros da predição

df_nn <- df_nn %>% mutate(erro = volatilidade_implicita - volatilidade_predita)

hist(df_nn$erro,
     main = "Distribuição dos erros da volatilidade realizada pela predita",
     xlab = "Erro",
     ylab = "Frequência",
     xlim = c(-0.04, 0.04))

plot(rede_neural, rep = "best")



Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. springer.

Black, Myron, Fischer e Scholes. 1973. “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81 (3). The University of Chicago Press: 637–54.

Friedman, Trevor e Tibshirani, Jerome e Hastie. 2001. The Elements of Statistical Learning. 10. Springer series in statistics New York.

Hutchinson, Andrew W e Poggio, James M e Lo. 1994. “A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks.” The Journal of Finance, no. 3. Wiley Online Library: 851–89.

Huynh. 2018. “Modelling and Forecasting Implied Volatility Using Neural Network.” Hanken School of Economics.

McCulloch, Walter, Warren S e Pitts. 1943. “A Logical Calculus of the Ideas Immanent in Nervous Activity.” The Bulletin of Mathematical Biophysics 5 (4). Springer: 115–33.

Posted by Gabriel Dias in Derivativos & Riscos, 1 comment